4.7 Article

M2 macrophages, but not M1 macrophages, support megakaryopoiesis by upregulating PI3K-AKT pathway activity

期刊

出版社

SPRINGERNATURE
DOI: 10.1038/s41392-021-00627-y

关键词

-

资金

  1. National Key Research and Development Program [2017YFA0104500, 2019YFC0840606]
  2. National Natural Science Foundation of China [82070188, 81870139, 81930004]
  3. Foundation for Innovative Research Groups of the National Natural Science Foundation of China [81621001]
  4. Science and Technology Project of Guangdong Province of China [2016B030230003]

向作者/读者索取更多资源

The study revealed the critical role of macrophages in regulating megakaryocyte production, with M1 and M2 macrophages exhibiting opposing effects in a manner dependent on the PI3K-AKT pathway. This sheds light on the pathogenesis of thrombocytopenia and presents a potential therapeutic strategy for promoting megakaryopoiesis.
Dysfunctional megakaryopoiesis hampers platelet production, which is closely associated with thrombocytopenia (PT). Macrophages (MCYRILLIC CAPITAL LETTER EFs) are crucial cellular components in the bone marrow (BM) microenvironment. However, the specific effects of M1 MCYRILLIC CAPITAL LETTER EFs or M2 MCYRILLIC CAPITAL LETTER EFs on regulating megakaryocytes (MKs) are largely unknown. In the current study, aberrant BM-M1/M2 MCYRILLIC CAPITAL LETTER EF polarization, characterized by increased M1 MCYRILLIC CAPITAL LETTER EFs and decreased M2 MCYRILLIC CAPITAL LETTER EFs and accompanied by impaired megakaryopoiesis-supporting abilities, was found in patients with PT post-allotransplant. RNA-seq and western blot analysis showed that the PI3K-AKT pathway was downregulated in the BM MCYRILLIC CAPITAL LETTER EFs of PT patients. Moreover, in vitro treatment with PI3K-AKT activators restored the impaired megakaryopoiesis-supporting ability of MCYRILLIC CAPITAL LETTER EFs from PT patients. Furthermore, we found M1 MCYRILLIC CAPITAL LETTER EFs suppress, whereas M2 MCYRILLIC CAPITAL LETTER EFs support MK maturation and platelet formation in humans. Chemical inhibition of PI3K-AKT pathway reduced megakaryopoiesis-supporting ability of M2 MCYRILLIC CAPITAL LETTER EFs, as indicated by decreased MK count, colony-forming unit number, high-ploidy distribution, and platelet count. Importantly, genetic knockdown of the PI3K-AKT pathway impaired the megakaryopoiesis-supporting ability of MCYRILLIC CAPITAL LETTER EFs both in vitro and in a MCYRILLIC CAPITAL LETTER EF-specific PI3K-knockdown murine model, indicating a critical role of PI3K-AKT pathway in regulating the megakaryopoiesis-supporting ability of M2 MCYRILLIC CAPITAL LETTER EFs. Furthermore, our preliminary data indicated that TGF-beta released by M2 MCYRILLIC CAPITAL LETTER EFs may facilitate megakaryopoiesis through upregulation of the JAK2/STAT5 and MAPK/ERK pathways in MKs. Taken together, our data reveal that M1 and M2 MCYRILLIC CAPITAL LETTER EFs have opposing effects on MKs in a PI3K-AKT pathway-dependent manner, which may lead to new insights into the pathogenesis of thrombocytopenia and provide a potential therapeutic strategy to promote megakaryopoiesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据