4.6 Article

Self-assembly of functionalized Echinops-like Rh porous nanostructure electrocatalysts for highly efficient seawater splitting

期刊

JOURNAL OF MATERIALS CHEMISTRY C
卷 9, 期 26, 页码 8314-8322

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1tc01722e

关键词

-

资金

  1. National Natural Science Foundation of China [51772162, 22001143, 52072197]
  2. Youth Innovation and Technology Foundation of Shandong Higher Education Institutions, China [2019KJC004]
  3. Outstanding Youth Foundation of Shandong Province, China [ZR2019JQ14]
  4. Taishan Scholar Young Talent Program [tsqn201909114, tsqn201909123]
  5. Natural Science Foundation of Shandong Province [ZR2020YQ34]
  6. Major Scientific and Technological Innovation Project [2019JZZY020405]
  7. Major Basic Research Program of Natural Science Foundation of Shandong Province [ZR2020ZD09]

向作者/读者索取更多资源

This study successfully synthesized novel polyethyleneimine (PEI) functionalized Echinops-like Rh porous nanostructures with high efficiency in both hydrogen and oxygen evolution reactions under neutral conditions. The structures exhibited excellent stability and enhanced activity compared to commercial catalysts, showing potential for improving the efficiency of seawater splitting.
Although water electrolysis provides a promising technology for global hydrogen economics, highly efficient electrocatalysts are required to boost the sluggish kinetics of both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) under neutral conditions. Herein, we synthesized novel polyethyleneimine (PEI) functionalized Echinops-like Rh porous nanostructures (Echinops-like Rh PNNSs) by a solvothermal method, which originated from the self-assembly of Rh two-dimensional (2D) sub-nanoflakes with 1.2 nm thickness. As a good electron donor, -NH2 on PEI could modulate the electronic structure of Echinops-like Rh PNNSs, reducing the adsorption energy of H2O on the surface of Echinops-like Rh PNNSs. Meanwhile, -NH2 groups could specifically enrich H2O molecules under neutral conditions, which facilitates water splitting. The as-synthesized Echinops-like Rh PNNSs exhibit high HER activity with ultralow overpotential, low Tafel slope, and excellent stability. Moreover, the Echinops-like Rh PNNSs also showed an enhanced OER activity than commercial RuO2 with a small overpotential of 79.5 mV at 10 mA cm(-2) in neutral media. When using Echinops-like Rh PNNSs as both anode and cathode catalysts for overall seawater splitting, a cell voltage of only 1.61 V is needed for generating 10 mA cm(-2) current density, greatly boosting the efficiency of seawater splitting.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据