4.6 Article

Complete parameter inference for GW150914 using deep learning

期刊

出版社

IOP Publishing Ltd
DOI: 10.1088/2632-2153/abfaed

关键词

gravitational waves; black holes; parameter estimation; deep learning

资金

  1. NSF's LIGO Laboratory - National Science Foundation

向作者/读者索取更多资源

The LIGO and Virgo gravitational-wave observatories have detected many exciting events over the past 5 years. In order to infer the system parameters of binary black hole systems, researchers have applied deep learning to learn non-iterative surrogate models for Bayesian posterior distributions, allowing for rapid and accurate estimation.
The LIGO and Virgo gravitational-wave observatories have detected many exciting events over the past 5 years. To infer the system parameters, iterative sampling algorithms such as MCMC are typically used with Bayes' theorem to obtain posterior samples-by repeatedly generating waveforms and comparing to measured strain data. However, as the rate of detections grows with detector sensitivity, this poses a growing computational challenge. To confront this challenge, as well as that of fast multimessenger alerts, in this study we apply deep learning to learn non-iterative surrogate models for the Bayesian posterior. We train a neural-network conditional density estimator to model posterior probability distributions over the full 15-dimensional space of binary black hole system parameters, given detector strain data from multiple detectors. We use the method of normalizing flows-specifically, a neural spline flow-which allows for rapid sampling and density estimation. Training the network is likelihood-free, requiring samples from the data generative process, but no likelihood evaluations. Through training, the network learns a global set of posteriors: it can generate thousands of independent posterior samples per second for any strain data consistent with the training distribution. We demonstrate our method by performing inference on GW150914, and obtain results in close agreement with standard techniques.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据