4.6 Article

Decoherence scaling transition in the dynamics of quantum information scrambling

期刊

PHYSICAL REVIEW A
卷 104, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.104.012402

关键词

-

资金

  1. CNEA
  2. ANPCyT-FONCyT [PICT-2017-3447, PICT-2017-3699, PICT-2018-04333]
  3. PIPCONICET [11220170100486CO]
  4. UNCUYO SIIP [Tipo I 2019-C028]
  5. Instituto Balseiro
  6. CONICET fellowships

向作者/读者索取更多资源

This study demonstrates the resilience of controlled dynamics in quantum information, which is promising for reliable control of large quantum systems. The sensitivity of controlled Hamiltonian evolution to perturbations is quantified, showing a decay rate of process fidelity that increases with the effective number of correlated qubits K. There is a decoherence scaling transition of the exponent alpha based on perturbation strength, suggesting two distinct dynamical regimes.
Reliable processing of quantum information for developing quantum technologies requires precise control of out-of-equilibrium many-body systems. This is a highly challenging task because the fragility of quantum states to external perturbations increases with the system size. Here, we report on a series of experimental quantum simulations that quantify the sensitivity of a controlled Hamiltonian evolution to perturbations that drive the system away from the targeted evolution. Based on out-of-time ordered correlations, we demonstrate that the decay rate of the process fidelity increases with the effective number K of correlated qubits as K alpha. As a function of the perturbation strength, we observe a decoherence scaling transition of the exponent alpha between two distinct dynamical regimes. In the limiting case below the critical perturbation strength, the exponent alpha drops sharply below 1, and there is no inherent limit to the number of qubits that can be controlled. This resilient quantum feature of the controlled dynamics of quantum information is promising for reliable control of large quantum systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据