4.7 Article

iCircRBP-DHN: identification of circRNA-RBP interaction sites using deep hierarchical network

期刊

BRIEFINGS IN BIOINFORMATICS
卷 22, 期 4, 页码 -

出版社

OXFORD UNIV PRESS
DOI: 10.1093/bib/bbaa274

关键词

deep learning; deep hierarchical network; CircRNA-RBP interaction site identification; CircRNA2Vec

资金

  1. National Natural Science Foundation of China [62076109]
  2. Natural Science Foundation of Jilin Province [20190103006JH]
  3. Health and Medical Research Fund, the Food and Health Bureau, the Government of the Hong Kong Special Administrative Region [07181426]

向作者/读者索取更多资源

The study introduces a new computational method iCircRBP-DHN for discriminating circRNA-RBP binding sites using deep hierarchical networks. Experimental results demonstrate that the proposed method outperforms other algorithms on 37 circRNAs datasets and 31 linear RNAs datasets. The novel encoding schemes provide improved performance.
Circular RNAs (circRNAs) are widely expressed in eukaryotes. The genome-wide interactions between circRNAs and RNA-binding proteins (RBPs) can be probed from cross-linking immunoprecipitation with sequencing data. Therefore, computational methods have been developed for identifying RBP binding sites on circRNAs. Unfortunately, those computational methods often suffer from the low discriminative power of feature representations, numerical instability and poor scalability. To address those limitations, we propose a novel computational method called iCircRBP-DHN using deep hierarchical network for discriminating circRNA-RBP binding sites. The network architecture can be regarded as a deep multi-scale residual network followed by bidirectional gated recurrent units (BiGRUs) with the self-attention mechanism, which can simultaneously extract local and global contextual information. Meanwhile, we propose novel encoding schemes by integrating CircRNA2Vec and the K-tuple nucleotide frequency pattern to represent different degrees of nucleotide dependencies. To validate the effectiveness of our proposed iCircRBP-DHN, we compared its performance with other computational methods on 37 circRNAs datasets and 31 linear RNAs datasets, respectively. The experimental results reveal that iCircRBP-DHN can achieve superior performance over those state-of-the-art algorithms. Moreover, we perform motif analysis on circRNAs bound by those different RBPs, demonstrating that our proposed CircRNA2Vec encoding scheme can be promising. The iCircRBP-DHN method is made available at https://github.com/houzl3416/iCircRBP-DHN.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据