4.4 Article

Levistilide A inhibits angiogenesis in liver fibrosis via vascular endothelial growth factor signaling pathway

期刊

EXPERIMENTAL BIOLOGY AND MEDICINE
卷 242, 期 9, 页码 974-985

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/1535370217701005

关键词

Liver fibrosis; angiogenesis; hepatic sinusoidal endothelial cell; capillarization; vascular endothelial growth factor signaling pathway; levistilide A

资金

  1. National Natural Science Foundation of China [81102702, 81473404, 81173405]

向作者/读者索取更多资源

Levistilide A (C24H28O4, molecular weight=380.48) derived from Angelica sinensis (Danggui) has been reported to inhibit hepatic stellate cell proliferation. This study investigated the effects of levistilide A on liver fibrosis relating to angiogenesis, particularly on the characteristic change in liver sinusoidal endothelial cells. LX-2 cells were activated by TGF-1, and the human hepatic sinusoidal endothelial cells (HHSECs) were induced by endothelial cell growth supplement. Cell viability was detected using a methylthiazoldiphenyl-tetrazolium bromide assay; F-actin was visualized through the fluorescence probe method; cell proliferation was examined using the EdU kit; antiangiogenesis activity was assessed using the tube formation assay and transgenic zebrafish model. To verify the results invivo, rats were subcutaneously injected with CCl4 twice a week for six weeks to duplicate the liver fibrosis model and then treated with 10mL/kg of normal saline, 4mg/kg of sorafenib, and 3 and 6mg/kg of levistilide A for three weeks from the fourth week. Collagen deposition was detected through Sirius Red staining; liver microvasculature was examined through vWF labeling and X-ray 2D imaging; sinusoidal fenestrations were observed through scanning electron microscopy; collagen I, -SMA, CD31, vascular endothelial growth factor (VEGF), and VEGF-R2 were detected through Western blotting. Our results indicated that levistilide A attenuated LX-2 cell activation and HHSEC proliferation. The ability of HHSECs to form tubelike structures in Matrigel was inhibited, and the number of functional vessels in transgenic zebrafish decreased. In invivo experiments, levistilide A reduced collagen deposition and the number of new microvessels; ameliorated sinusoid capillarization; and downregulated the expression of CD31, VEGF, and VEGF-R2. These findings suggest that levistilide A can inhibit liver fibrosis through antiangiogenesis by alleviating sinusoid capillarization via the VEGF signaling pathway. Impact statement Levistilide A has been reported to inhibit hepatic stellate cell (HSC) proliferation. In this study, we further investigated the mechanisms of levistilide A on liver fibrosis relating to angiogenesis, particularly on the characteristic change in liver sinusoidal endothelial cells. The cell models of HSC and liver sinusoidal endothelial cell and CCl4 induced liver fibrosis model were used. These results suggest that levistilide A can inhibit liver fibrosis through antiangiogenesis by alleviating sinusoid capillarization via the vascular endothelial growth factor signaling pathway. The effect of levistilide A on liver fibrosis was confirmed, and its detailed mechanism was also discussed. These findings suggest that levistilide A may be a great potential drug for treating liver fibrosis through antiangiogenesis, and this effect will be verified in other fibrotic animal model studies or by clinical trials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据