4.7 Article

Multiscale semi-Lagrangian lattice Boltzmann method

期刊

PHYSICAL REVIEW E
卷 103, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.103.063305

关键词

-

资金

  1. European Research Council (ERC) [834763-PonD, s1066, s897]

向作者/读者索取更多资源

A multi-scale lattice Boltzmann scheme is proposed to adaptively refine particles' velocity space, efficiently coupling different velocity sets of lower and higher order. The scheme shows flexibility in model selection and reduction in computational requirements, validated in various flow setups.
We present a multi-scale lattice Boltzmann scheme, which adaptively refines particles' velocity space. Different velocity sets of lower and higher order are consistently and efficiently coupled, allowing us to use the higher-order model only when and where needed. This includes regions of high Mach or high Knudsen numbers. The coupling procedure of discrete velocity sets consists of either a projection of the higher-order populations onto the lower-order lattice or lifting of the lower-order populations to the higher-order velocity space. Both lifting and projection are local operations, which enable a flexible adaptive velocity set. The proposed scheme is formulated for both a static and an optimal, co-moving reference frame, in the spirit of the recently introduced Particles on Demand method. The multi-scale scheme is validated with an advection of an athermal vortex and in a jet flow setup. The performance of the proposed scheme is further investigated in the shock structure problem and a high-Knudsen-number Couette flow, typical examples of highly non-equilibrium flows in which the order of the velocity set plays a decisive role. The results demonstrate that the proposed multi-scale scheme can operate accurately, with flexibility in terms of the underlying models and with reduced computational requirements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据