3.8 Article

Empirical quenching correction in radiochromic silicone-based three-dimensional dosimetry of spot-scanning proton therapy

期刊

PHYSICS & IMAGING IN RADIATION ONCOLOGY
卷 18, 期 -, 页码 11-18

出版社

ELSEVIER
DOI: 10.1016/j.phro.2021.03.006

关键词

3D dosimetry; Proton therapy; Quenching; Dosimeter calibration

资金

  1. Novo Nordisk Foundation [NNF18OC0034718]
  2. Novo Nordisk Fonden [NNF18OC0034718] Funding Source: researchfish

向作者/读者索取更多资源

This study evaluated the viability of an empirical correction model for 3D radiochromic silicone-based dosimeters irradiated with spot-scanning proton therapy. The model successfully corrected for signal quenching effects, allowing for accurate dosimetric measurements in complex dose distributions for proton therapy. Differences in dose response and signal quenching were observed between dosimeters of different sizes.
Background and purpose: Three-dimensional dosimetry of proton therapy (PT) with chemical dosimeters is challenged by signal quenching, which is a lower dose-response in regions with high ionization density due to high linear-energy-transfer (LET) and dose-rate. This study aimed to assess the viability of an empirical correction model for 3D radiochromic silicone-based dosimeters irradiated with spot-scanning PT, by parametrizing its LET and dose-rate dependency. Materials and methods: Ten cylindrical radiochromic dosimeters (empty set50 and empty set75 mm) were produced in-house, and irradiated with different spot-scanning proton beam configurations and machine-set dose rates ranging from 56 to 145 Gy/min. Beams with incident energies of 75, 95 and 120 MeV, a spread-out Bragg peak and a plan optimized to an irregular target volume were included. Five of the dosimeters, irradiated with 120 MeV beams, were used to estimate the quenching correction factors. Monte Carlo simulations were used to obtain dose and dose-averaged-LET (LETd) maps. Additionally, a local dose-rate map was estimated, using the simulated dose maps and the machine-set dose-rate information retrieved from the irradiation log-files. Finally, the correction factor was estimated as a function of LETd and local dose-rate and tested on the different fields. Results: Gamma-pass-rates of the corrected measurements were >94% using a 3%-3 mm gamma analysis and >88% using 2%-2 mm, with a dose deviation of <5.6 +/- 1.8%. Larger dosimeters showed a 20% systematic increase in dose-response, but the same quenching in signal when compared to the smaller dosimeters. Conclusion: The quenching correction model was valid for different dosimeter sizes to obtain relative dosimetric maps of complex dose distributions in PT.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据