4.8 Article

Photomediated core modification of organic photoredox catalysts in radical addition: mechanism and applications

期刊

CHEMICAL SCIENCE
卷 12, 期 27, 页码 9432-9441

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1sc02258j

关键词

-

资金

  1. National Key Research and Development Program of China [2016YFB0301501]
  2. National Science Foundation of China [21776130, 21878145, 21973044]
  3. Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture [X1821, X1802]
  4. Postgraduate Research & Practice Innovation Program of Jiangsu Province
  5. Nanjing Tech University [39837123, 39837132]

向作者/读者索取更多资源

Core modifications of dihydrophenazines and their analogues improve the efficiency and stability of organic photoredox catalysis, leading to more effective control of polymerization under simulated sunlight.
Dihydrophenazines and their analogues have been widely used as strong reducing photoredox catalysts in radical chemistry, such as organocatalyzed atom transfer radical polymerization (O-ATRP). However, when dihydrophenazines were employed as organic photoredox catalysts (OPCs) to mediate O-ATRP, the initiator efficiency was nonquantitative due to cross-coupling between dihydrophenazines and radical species. Here, a new kind of core modification for dihydrophenazines, phenoxazines and phenothiazines was developed through this cross-coupling process. Mechanistic studies suggested that the radical species would be more likely to couple with OPC' radical cations rather than the ground-state OPC. Core modification of OPCs could stabilize the radical ions in an oxidative quenching catalytic cycle. Significantly, core modifications of OPCs could lower the energy of light required for photoexcitation. Compared with their noncore-modified counterparts, all the core-modified dihydrophenazines and phenoxazines exhibited efficient performance in controlling O-ATRP for the synthesis of poly(methyl methacrylate) with higher initiator efficiencies under the irradiation of simulated sunlight.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据