4.5 Article

MGST1 is a redox-sensitive repressor of ferroptosis in pancreatic cancer cells

期刊

CELL CHEMICAL BIOLOGY
卷 28, 期 6, 页码 765-+

出版社

CELL PRESS
DOI: 10.1016/j.chembiol.2021.01.006

关键词

-

资金

  1. National Natural Science Foundation of China [81802476]

向作者/读者索取更多资源

MGST1 plays a key role in inhibiting ferroptosis, with a synergistic effect with NFE2L2. It inhibits lipid peroxidation by binding to ALOX5 and is positively correlated with NFE2L2 expression in pancreatic tumors, potentially impacting the prognosis of PDAC patients. Targeting the MGST1 redox-sensitive pathway may be a promising strategy for PDAC treatment.
Ferroptosis is a type of nonapoptotic cell death driven by lipid peroxidation. Here, we show a key role of MGST1 in inhibiting ferroptosis in cell cultures and mouse xenograft models. Ferroptosis activators induce MGST1 upregulation in human pancreatic ductal adenocarcinoma (PDAC) cell lines in an NFE2L2-dependent manner The genetic depletion of MGST1 or NFE2L2 has a similar effect in promoting ferroptosis, whereas the re-expression of MGST1 restores the resistance of NFE2L2-knockdown cells to ferroptosis. MGST1 inhibits ferroptotic cancer cell death partly by binding to ALOX5, resulting in reduced lipid peroxidation. The expression of MGST1 is positively correlated with NFE2L2 expression in pancreatic tumors, which is implicated in the poor prognosis of patients with PDAC. These findings not only provide a valuable insight into the defense mechanism against ferroptotic cell death, but also indicate that targeting the MGST1 redox-sensitive pathway may be a promising strategy for the treatment of PDAC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据