4.7 Article

Phase/Amplitude Synchronization of Brain Signals During Motor Imagery BCI Tasks

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNSRE.2021.3088637

关键词

Electroencephalography; Task analysis; Feature extraction; Integrated circuits; Coherence; Grasping; Frequency estimation; EEG; functional connectivity; network theory; brain-computer interface

资金

  1. Investissements d'avenir Program (Agence Nationale de la Recherche-10-IA Institut Hospitalo-Universitaire-6) [ANR-10-IAIHU-06]
  2. Agence Nationale de la Recherche [ANR15-NEUC-0006-02]
  3. European Research Council (ERC) under the European Union [864729]
  4. European Research Council (ERC) [864729] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

By studying the brain signals of 20 healthy subjects during a motor imagery task, it was found that spectral coherence and imaginary coherence exhibited different changes in network features, further demonstrating that this opposite behavior was caused by an increase in amplitude and phase synchronization between brain signals.
In the last decade, functional connectivity (FC) has been increasingly adopted based on its ability to capture statistical dependencies between multivariate brain signals. However, the role of FC in the context of brain-computer interface applications is still poorly understood. To address this gap in knowledge, we considered a group of 20 healthy subjects during an EEG-based hand motor imagery (MI) task. We studied two well-established FC estimators, i.e. spectral- and imaginary-coherence, and we investigated how they were modulated by the MI task. We characterized the resulting FC networks by extracting the strength of connectivity of each EEG sensor and we compared the discriminant power with respect to standard power spectrum features. At the group level, results showed that while spectral-coherence based network features were increasing in the sensorimotor areas, those based on imaginary-coherence were significantly decreasing. We demonstrated that this opposite, but complementary, behavior was respectively determined by the increase in amplitude and phase synchronization between the brain signals. At the individual level, we eventually assessed the potential of these network connectivity features in a simple off-line classification scenario. Taken together, our results provide fresh insights into the oscillatory mechanisms subserving brain network changes during MI and offer new perspectives to improve BCI performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据