4.7 Article Proceedings Paper

Monitoring Cortical Response and Electrode-Retina Impedance Under Epiretinal Stimulation in Rats

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNSRE.2021.3090904

关键词

Retina; Electrodes; Impedance; Monitoring; Visualization; Rats; Surface impedance; Epiretinal implant; retinal electrical stimulation; electrode impedance; cortical response; primary visual cortex; electrode-retina proximity

资金

  1. Hong Kong Research Grants Council (RGC) General Research Fund [11208218, 11207419, CityU 9042648, 9042829]
  2. Innovation Technology Fund Guangdong-Hong Kong Technology Cooperation Funding Scheme [GHP/078/18GD]
  3. National Natural Science Foundation of China [31800871]
  4. Guangdong Science and Technology Research Program [2019A050503007]
  5. International Cooperation Project of Chinese Academy of Sciences [172644KYSB20190077]
  6. Shenzhen Science and Technology Research Program [JCYJ20170818152810899, JSGG20170824170930929]
  7. Shenzhen Maker and Start-up Funding Project [CKCY20180329110601787]

向作者/读者索取更多资源

Retinal prostheses can restore partial vision in patients with retinal diseases, but precise positioning remains challenging, and high impedance may not always lead to optimal cortical responses.
Retinal prosthesis can restore partial vision in patients with retinal degenerative diseases such as retinitis pigmentosa and age-related macular degeneration. Epiretinal prosthesis is one of three therapeutic approaches, which received regulatory approval several years ago. The thresholds of an epiretinal stimulation is partly determined by the size of the physical gap between the electrode and the retina after implantation. Precise positioning of epiretinal stimulating electrode array is still a challenging task. In this study, we demonstrate an approach to positioning epiretinal prostheses for an optimal response at the cortical output by monitoring both the impedance at the electrode-retina interface and the evoked-potential at the cortical level. We implanted a single-channel electrode on the epiretinal surface in adult rats, acutely, guided by both the impedance at the electrode-retina interface and by electrically evoked potentials (EEPs) in the visual cortex during retinal stimulation. We observe that impedance monotonously increases with decreasing electrode-retina distance, but that the strongest cortical responses were achieved at intermediate impedance levels. When the electrode penetrates the retina, the impedance keeps increasing. The effect of stimulation on the retina changes from epiretinal paradigm to intra-retinal paradigm and a decrease in cortical activation is observed. It is found that high impedance is not always favorable to elicit best cortical responses. Histopathological results showed that the electrode was placed at the intra-retinal space at high impedance value. These results show that monitoring impedance at the electrode-retina interface is necessary but not sufficient in obtaining strong evoked-potentials at the cortical level. Monitoring the cortical EEPs together with the impedance can improve the safety of implantation as well as efficacy of stimulation in the next generation of retinal implants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据