4.6 Article

High performance fiber-shaped supercapacitors based on core-shell fiber electrodes with adjustable surface wrinkles and robust interfaces

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 9, 期 31, 页码 16852-16859

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1ta04007c

关键词

-

资金

  1. Key Project of Guangzhou Science and Technology Plan Project [201904020034]
  2. National Natural Science Foundation of China [52073099]
  3. China Postdoctoral Science Foundation [2020M682701]
  4. Guangdong Natural Science Foundation [2021A1515010675, 2021A1515010714]
  5. Guangdong Project of R&D Plan in Key Areas [2020B010180001]

向作者/读者索取更多资源

By designing an adjustable wrinkled polypyrrole sheath on the fiber surface, this study increased the surface area and interfacial stability of supercapacitors, achieving the design of high-performance FSSCs.
Fiber-shaped supercapacitors (FSSCs) have the advantages of light weight, small size and good compatibility with the textile industry. However, it is the small size that restricts both the mass-loading and loading stability of active materials on fiber electrodes, which further influences the electrochemical and mechanical performance of the devices. In this work, to increase the surface area and interfacial stability, we designed an adjustable wrinkled polypyrrole (PPy) sheath on the surface of a reduced graphene oxide/alginate (rGO/Alg) hydrogel fiber core via in situ polymerization. Because of the large surface area of the PPy wrinkles, the obtained core-shell fiber showed a high volumetric specific capacitance of 326.20 F cm(-3) in liquid electrolyte. Besides, with the robust interfacial interaction between the PPy and the flexible rGO/Alg matrix, the fiber displayed an excellent cycling stability with 91.61% capacitance retention after 10 000 charge/discharge cycles at a high current density of 10 A cm(-3). And the assembled symmetrical supercapacitor also showed 83.45% capacitance retention after 2000 bending cycles up to 180 degrees and delivered an energy density of 2.15 mW h cm(-3) at a high power density of 493.6 mW cm(-3), further demonstrating its high stability and flexibility. This work provides a new strategy for the design of stable micro-wrinkles on the fiber surface for high performance FSSCs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据