4.6 Article

Interacting holes in Si and Ge double quantum dots: From a multiband approach to an effective-spin picture

期刊

PHYSICAL REVIEW B
卷 104, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.104.035302

关键词

-

资金

  1. European Commission [H2020-FETOPEN-2018-2019-2020-01, 829005]

向作者/读者索取更多资源

In this study, two-hole states in prototypical coupled Si and Ge quantum dots were investigated using different theoretical approaches. It was found that, in the weak interdot regime, the ground state and first excited multiplet of the two-hole system displayed a high degree of mixing, even in the limit of purely heavy-hole states. The light-hole component further induced mixing and weak coupling between spinors characterized by different permutational symmetries.
The states of two electrons in tunnel-coupled semiconductor quantum dots can be effectively described in terms of a two-spin Hamiltonian with an isotropic Heisenberg interaction. A similar description needs to be generalized in the case of holes due to their multiband character and spin-orbit coupling, which mixes orbital and spin degrees of freedom and splits j = 3/2 and j = 1/2 multiplets. Here we investigate two-hole states in prototypical coupled Si and Ge quantum dots via different theoretical approaches. Multiband k . p and configuration-interaction calculations are combined with entanglement measures in order to thoroughly characterize the two-hole states in terms of band mixing and justify the introduction of an effective spin representation, which we analytically derive a from generalized Hubbard model. We find that, in the weak interdot regime, the ground state and first excited multiplet of the two-hole system display-unlike their electronic counterparts-a high degree of J mixing, even in the limit of purely heavy-hole states. The light-hole component additionally induces M mixing and a weak coupling between spinors characterized by different permutational symmetries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据