4.7 Review

Connections of climate change and variability to large and extreme forest fires in southeast Australia

期刊

出版社

SPRINGERNATURE
DOI: 10.1038/s43247-020-00065-8

关键词

-

资金

  1. Australian Research Council through the Centre of Excellence for Climate Extremes [CE170100023]
  2. Earth Systems and Climate Change (ESCC) Hub of the National Environmental Science Programme (NESP)
  3. Bushfire and Natural Hazards Cooperative Research Centre
  4. NSW Bushfire Risk Management Research Hub
  5. Australian Research Council [FT160100029, IN140100011, IN160100029, LP150100062]
  6. Australian Research Council [LP150100062, FT160100029, IN160100029, IN140100011] Funding Source: Australian Research Council

向作者/读者索取更多资源

The unprecedented 2019/20 Black Summer bushfire disaster in southeast Australia was mainly caused by extreme dry climate and long-term climate trends leading to increased fire risk. Improving local and national adaptation measures while pursuing ambitious global climate change mitigation efforts are necessary to limit further increases in fire risk in southeast Australia. Multiple climate change contributors have led to an increase in fire extent and intensity over the past decades, and this trend is likely to continue into the future.
The 2019/20 Black Summer bushfire disaster in southeast Australia was unprecedented: the extensive area of forest burnt, the radiative power of the fires, and the extraordinary number of fires that developed into extreme pyroconvective events were all unmatched in the historical record. Australia's hottest and driest year on record, 2019, was characterised by exceptionally dry fuel loads that primed the landscape to burn when exposed to dangerous fire weather and ignition. The combination of climate variability and long-term climate trends generated the climate extremes experienced in 2019, and the compounding effects of two or more modes of climate variability in their fire-promoting phases (as occurred in 2019) has historically increased the chances of large forest fires occurring in southeast Australia. Palaeoclimate evidence also demonstrates that fire-promoting phases of tropical Pacific and Indian ocean variability are now unusually frequent compared with natural variability in pre-industrial times. Indicators of forest fire danger in southeast Australia have already emerged outside of the range of historical experience, suggesting that projections made more than a decade ago that increases in climate-driven fire risk would be detectable by 2020, have indeed eventuated. The multiple climate change contributors to fire risk in southeast Australia, as well as the observed non-linear escalation of fire extent and intensity, raise the likelihood that fire events may continue to rapidly intensify in the future. Improving local and national adaptation measures while also pursuing ambitious global climate change mitigation efforts would provide the best strategy for limiting further increases in fire risk in southeast Australia. Multiple climate contributors to fire risk in southeast Australia have led to an increase in fire extent and intensity over the past decades that will likely continue into the future, suggests a synthesis of climate variability, long-term trends and palaeoclimatic evidence.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据