4.6 Article

Many-body perturbation theory for the superconducting quantum dot: Fundamental role of the magnetic field

期刊

PHYSICAL REVIEW B
卷 103, 期 23, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.103.235163

关键词

-

资金

  1. Czech Science Foundation [19-13525S]
  2. INTER-COST [LTC19045]
  3. COST Action NANOCOHYBRI of the Czech Ministry of Education, Youth and Sports [CA16218]

向作者/读者索取更多资源

This study develops a general many-body perturbation theory for a superconducting quantum dot and shows the critical role of the magnetic field in the 0-π quantum transition.
We develop the general many-body perturbation theory for a superconducting quantum dot represented by a single-impurity Anderson model attached to superconducting leads. We build our approach on a thermodynamically consistent mean-field approximation with a two-particle self-consistency of the parquet type. The two-particle self-consistency leading to a screening of the bare interaction proves substantial for suppressing the spurious transitions of the Hartree-Fock solution. We demonstrate that the magnetic field plays a fundamental role in the extension of the perturbation theory beyond the weakly correlated 0 phase. It controls the critical behavior of the 0-pi quantum transition and lifts the degeneracy in the pi phase, where the limits to zero temperature and zero magnetic field do not commute. The response to the magnetic field is quite different in 0 and pi phases. While the magnetic susceptibility vanishes in the 0 phase it becomes divergent in the pi phase at zero temperature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据