4.7 Article

Evaluation of the aqueous Fe (II) ion sorption capacity of functionalized microcrystalline cellulose

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jece.2021.105703

关键词

Adsorption; Microcrystalline cellulose; Adsorption mechanism; Adsorption modeling; Iron (II) ion

向作者/读者索取更多资源

This study successfully introduced oxygenous functional groups onto microcrystalline cellulose, enhancing the metal binding capacity of the synthesized adsorbent. Instrumental characterization confirmed the presence of oxygen-based functional groups and their structural crystallinity. The study also elucidated the effect of process variables on the adsorption capacity of 'FM-cell', with satisfactory predictions from the Dubinin-Radushkevich and intraparticle diffusion models.
The absence of relevant functional groups, especially the oxygen-based groups, have been reported to strongly limit the metal binding capacity of native cellulose. Therefore, this study successfully introduced substantive oxygenous functional groups (C=O, -OH, C-O, etc.) onto microcrystalline cellulose via functionalization with 1,2,3,4-Butanetetracarboxylic acid. The synthesized adsorbent ('FM-cell') was further utilized for aqueous iron (II) ion uptake. The adsorbent's instrumental characterization (scanning electron microscopy, SEM; Energy dispersion X-ray, EDX; X-ray diffraction, XRD and Fourier-transform infrared spectroscopy, FTIR) result confirmed the presence of the oxygen-based functional groups and their relative structural crystallinity. Similarly, the effect of the process variable on the 'FM-cell' adsorption capacity was elucidated via batch mode. The Dubinin-Radushkevich and intraparticle diffusion models satisfactorily predicted the isotherm and kinetic data, respectively. The sorption mechanism postulated strong adsorbent-adsorbate electrostatic interaction occasioned by the large coordination number of Fe (II) ions. Thus, the surface oxygenous functional groups abundance significantly enhanced the metal binding capacity of 'FM-cell'.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据