4.8 Review

Lattice oxygen redox chemistry in solid-state electrocatalysts for water oxidation

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 14, 期 9, 页码 4647-4671

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1ee01277k

关键词

-

资金

  1. Research Grant Council of Hong Kong [N_PolyU540/17]
  2. Hong Kong Polytechnic University [1-W144]
  3. Science, Technology, and Innovation Commission of Shenzhen [JCYJ20180507183424383]

向作者/读者索取更多资源

The lattice oxygen-mediated mechanism (LOM) derived from lattice oxygen redox chemistry is playing a significant role in solid-state OER electrocatalysts, providing insights into intrinsic activity and surface reconstruction issues, guiding the exploration of efficient electrocatalysts. Strategies for triggering lattice oxygen redox chemistry to promote intrinsic OER activity, along with theoretical calculations and experimental measurements, are crucial in this research area.
Fundamental understanding of oxygen evolution reaction (OER) is of vital importance as it dominates the overall efficiency of water electrolysis - a compelling technique for sustainable production of hydrogen feedstock. Recently, a lattice oxygen-mediated mechanism (LOM) derived from lattice oxygen redox chemistry has received a lot of attention as it can rationalize the highly intrinsic activity and surface reconstruction issue in solid-state electrocatalyst alternatives with high metal-oxygen covalency. The physicochemical fundamentals of LOM further guide the exploration of efficient OER electrocatalysts. In this review, we comprehensively summarize the recent progress in lattice oxygen redox chemistry in solid-state OER electrocatalysts and its induced LOM. We begin with a brief introduction of LOM together with proposed pathways, and discuss the fundamental correlations between electronic structure of catalysts and OER mechanism to provide several electronic descriptors. Subsequently, we summarize the strategies for triggering lattice oxygen redox chemistry to promote the intrinsic OER activity, together with the theoretical calculations and experimental measurements for corroboration of lattice oxygen oxidation. Finally, we offer an outlook of the remaining challenges and future perspectives towards lattice oxygen redox chemistry in OER electrocatalysts. We anticipate that this review can inspire researchers to develop this attractive research area together.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据