4.6 Article

Kondo holes in strongly correlated impurity arrays: RKKY-driven Kondo screening and hole-hole interactions

期刊

PHYSICAL REVIEW B
卷 104, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.104.045115

关键词

-

向作者/读者索取更多资源

The paper investigates the emergence and screening of local magnetic moments in solids, focusing on how these moments are screened and the determination of the low-temperature scale. Through numerical analysis and theoretical proof, the study reveals that stable local moments can be screened by three different mechanisms. It also shows the behavior of local moments under different phase transitions and the emergence of additional low-energy scales in certain conditions.
The emerging and screening of local magnetic moments in solids have been investigated for more than 60 years. Local vacancies as in graphene or in heavy fermions can induce decoupled bound states that lead to the formation of local moments. In this paper, we address the puzzling question how these local moments can be screened and what determines the additionally emerging low-temperature scale. We review the initial problem for half-filled conduction bands from two complementary perspectives: By a single-particle supercell analysis in the uncorrelated limit and by the Lieb-Mathis theorem for systems with a large Coulomb interaction U. Applying Wilson's numerical renormalization group approach to a recently developed mapping of the problem onto an effective low-energy description of a Kondo hole with up to N-f = 7 correlated impurities as background, we proof that the stable local moments are subject to screening by three different mechanisms. Firstly the local moments are delocalized by a finite U beyond the single-particle bound state. We find a Kosterlitz-Thouless type transition governed by an exponentially suppressed low-energy scale of a counterintuitive Kondo form with J(eff) proportional to U-n for smallU, where n > 1 depends on the precise model. Secondly, we show that away from half-filling the local moment phase becomes unstable and is replaced by two types of singlet phases that are adiabatically connected. At a critical value for the band center, the physics is governed by an exponentially suppressed Kondo scale approaching the strong coupling phase that is replaced by a singlet formation via antiferromagnetic RKKY interaction for large deviation from the critical values. Thirdly, we show that the local magnetic moment can be screened by a Kondo hole orbital at finite energy, even though the orbital occupation is negligible: An additional low-energy scale emerges below which the localized moment is quenched. Similarities to the experimental findings in Ce1-xLaxPd3 are pointed out.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据