4.6 Article

High-entropy effect of a metal phosphide on enhanced overall water splitting performance

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 9, 期 33, 页码 17913-17922

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1ta04755h

关键词

-

资金

  1. National Natural Science Foundation of China [U1832137, 21871130]
  2. Postgraduate Research & Practice Innovation Program of Jiangsu Province [SJCX21_0012]

向作者/读者索取更多资源

A one-step low temperature sol-gel strategy was proposed to synthesize high-entropy metal phosphide nanoparticles, which exhibited supernormal catalytic activities for the oxygen evolution reaction, hydrogen evolution reaction, and overall water splitting. The increase in metal species number led to decreased overpotentials for OER and HER, demonstrating the significant effect of high entropy on performance enhancement. This work provides a facile synthesis strategy for preparing high entropy compounds with great potential in energy and electrocatalysis applications.
High-entropy materials have gained extensive attention owing to their unique structural characteristics and outstanding properties. The synthesis of high-entropy compounds, particularly high-entropy metal phosphides, has been seldom reported because of the incompatibility between different metals and non-metals. Herein, we propose a one-step low temperature sol-gel strategy to overcome the incompatibility and synthesize high-entropy metal phosphide (HEMP) NiCoFeMnCrP nanoparticles on a carbon matrix. Due to the synergistic effect among the metal elements, NiCoFeMnCrP exhibits supernormal catalytic activities for the oxygen evolution reaction (OER), hydrogen evolution reaction (HER) and overall water splitting. The fact that the overpotentials for the OER and HER decrease with the increase of the metal species number demonstrates that the realization of high entropy has great effects on performance enhancement. Our work provides a facile and viable synthesis strategy for preparing high entropy compounds which would offer great potential in energy and electrocatalysis applications by entropy engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据