4.7 Review

Challenges and perspectives of covalent organic frameworks for advanced alkali-metal ion batteries

期刊

SCIENCE CHINA-CHEMISTRY
卷 64, 期 8, 页码 1267-1282

出版社

SCIENCE PRESS
DOI: 10.1007/s11426-021-1016-6

关键词

covalent organic frameworks; alkali-metal ion batteries; cathode; anode; structural design

资金

  1. Natural Science Foundation of Jiangsu Province of China [BK20180086]

向作者/读者索取更多资源

Covalent organic frameworks (COFs) are porous crystalline polymers widely studied in various fields, offering extraordinary chemical and thermal stability and high ion-diffusion coefficient. However, challenges include poor electronic conductivity and impeded ion transport in some COFs.
Covalent organic frameworks (COFs) are a class of porous crystalline polymers that have been widely investigated in various fields, including energy storage, photo/electrocatalysis, drug delivery. The covalent-bond interconnection allows COFs extraordinary chemical and thermal stability, and the porous structure ensures a high ion-diffusion coefficient. These merits compensate for the drawbacks of organic electrodes that are easy to dissolve and have low charge conductivity, and promote the development of novel electrode materials with excellent performance, environmental friendliness, and low price. However, the application of COFs also encountered many problems, such as poor electronic conductivity due to the large band gap. Moreover, in some three-dimensional (3D) COFs and stacked two-dimensional (2D) COFs, the huge crystal structure, aligned ultralong channels, and numerous crystal defects usually impede ion transport, and the large molecular weights of COFs generally decrease the specific capacities. These issues are urgently needed to be solved. Here in this review, we summarize the latest progress, core challenges and coping strategies concerning with the use of COFs in alkali-metal ion batteries, discuss the impact of material structure on energy storage, and propose strategies for the construction of high-performance COF-based electrodes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据