4.6 Article

Atomic defects in pothole-rich two-dimensional copper nanoplates triggering enhanced electrocatalytic selective nitrate-to-ammonia transformation

相关参考文献

注意:仅列出部分参考文献,下载原文获取全部文献信息。
Review Engineering, Environmental

Recent advances in non-noble metal electrocatalysts for nitrate reduction

Xi Zhang et al.

Summary: This review highlights the latest research progress in non-noble metal materials for electrochemical nitrate reduction, discussing mechanistic insights and strategies for improving performance.

CHEMICAL ENGINEERING JOURNAL (2021)

Article Engineering, Environmental

Concave-convex surface oxide layers over copper nanowires boost electrochemical nitrate-to-ammonia conversion

Tianlun Ren et al.

Summary: In this study, Cu nanowires with concave-convex surface Cu2+1O layers were prepared for efficient nitrate electroreduction to ammonia. The electronic interactions and interface effects between Cu and Cu2+1O contribute to the improved electroreduction ability over the Cu@Cu2+1O NWs. Tailoring surface/interface properties and atom structure can lead to highly efficient electrocatalysts for ammonia synthesis.

CHEMICAL ENGINEERING JOURNAL (2021)

Editorial Material Chemistry, Physical

Electrocatalytic Nitrate Reduction for Sustainable Ammonia Production

Phebe H. van Langevelde et al.

Summary: Phebe van Langevelde, Ioannis Katsounaros, and Marc Koper are renowned researchers in the field of electrocatalysis and renewable energy. Their research interests span from fundamental aspects of electrocatalysis to physical electrochemistry and theoretical electrochemistry. They have received various national and international awards for their contributions to the field.
Article Chemistry, Multidisciplinary

Metallic Co Nanoarray Catalyzes Selective NH3 Production from Electrochemical Nitrate Reduction at Current Densities Exceeding 2 A cm(-2)

Xiaohui Deng et al.

Summary: The study demonstrates the high NH3 producing capability and close-to-unity Faradaic efficiency of metallic cobalt nanoarrays in electrochemical nitrate reduction. Density function theory calculation reveals the optimized adsorption energy of NITRR intermediates on Co surface. Additionally, the study proposes a water dissociation-hydrogenation pathway that facilitates proton-supplying in the process.

ADVANCED SCIENCE (2021)

Article Chemistry, Physical

Theoretical Exploration of Electrochemical Nitrate Reduction Reaction Activities on Transition-Metal-Doped h-BP

Jie Wu et al.

Summary: The study demonstrates that V-doped h-BP monolayer is a promising catalyst for NO3- reduction reactions, showing low overpotential and high thermal stability, shedding light on the atomic mechanisms behind the NO3- reduction process.

JOURNAL OF PHYSICAL CHEMISTRY LETTERS (2021)

Article Chemistry, Multidisciplinary

Planar-Coordination PdSe2 Nanosheets as Highly Active Electrocatalyst for Hydrogen Evolution Reaction

Zhiping Lin et al.

Summary: Traditional 2D materials such as Mo and W only show activity at the edge position for hydrogen evolution reaction, while PdSe2, with reduced spatial polyhedron coordination to planar polygon coordination, has both Pd and Se atoms as active sites with improved activity for HER.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Chemistry, Multidisciplinary

A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate

Panpan Li et al.

Summary: The necessity for sustainable ammonia production using economic and environment-friendly technologies is increasing globally. This study presents an iron-based single-atom catalyst with uniform atomic dispersion on carbon, which exhibits high NH3 yield rate and faradaic efficiency. The catalyst's high selectivity for NH3 is attributed to the unique electronic structures of the individual Fe sites.

ENERGY & ENVIRONMENTAL SCIENCE (2021)

Review Chemistry, Physical

Recent discoveries in the reaction mechanism of heterogeneous electrocatalytic nitrate reduction

Zixuan Wang et al.

Summary: This review paper discusses the fundamental mechanisms and methods of heterogeneous electrocatalytic nitrate reduction technology, exploring the nitrate reduction reaction mechanism and product selectivity, evaluating electrocatalyst performance, and factors influencing reactivity and selectivity. It emphasizes how mechanistic studies have advanced the understanding of NO3RR, and how targeted studies can lead to improved synergy between experimental and computational results, predictive mechanistic understanding, and discovery of new NO3RR electrocatalysts.

CATALYSIS SCIENCE & TECHNOLOGY (2021)

Article Chemistry, Multidisciplinary

Tuning the Catalytic Preference of Ruthenium Catalysts for Nitrogen Reduction by Atomic Dispersion

Bing Yu et al.

ADVANCED FUNCTIONAL MATERIALS (2020)

Article Nanoscience & Nanotechnology

Iridium Nanotubes as Bifunctional Electrocatalysts for Oxygen Evolution and Nitrate Reduction Reactions

Jing-Yi Zhu et al.

ACS APPLIED MATERIALS & INTERFACES (2020)

Article Chemistry, Multidisciplinary

Unveiling the Activity Origin of a Copper-based Electrocatalyst for Selective Nitrate Reduction to Ammonia

Yuting Wang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Article Chemistry, Multidisciplinary

Enzyme Mimetic Active Intermediates for Nitrate Reduction in Neutral Aqueous Media

Yamei Li et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Article Chemistry, Multidisciplinary

Enhanced Nitrate-to-Ammonia Activity on Copper-Nickel Alloys via Tuning of Intermediate Adsorption

Yuhang Wang et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2020)

Article Chemistry, Multidisciplinary

Efficient Ammonia Electrosynthesis from Nitrate on Strained Ruthenium Nanoclusters

Jie Li et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2020)

Article Chemistry, Physical

Rhodium phosphide ultrathin nanosheets for hydrazine oxidation boosted electrochemical water splitting

Yue Zhao et al.

APPLIED CATALYSIS B-ENVIRONMENTAL (2020)

Article Materials Science, Multidisciplinary

Alternative route for electrochemical ammonia synthesis by reduction of nitrate on copper nanosheets

Xianbiao Fu et al.

APPLIED MATERIALS TODAY (2020)

Article Chemistry, Multidisciplinary

Coupled Vacancy Pairs in Ni-Doped CoSe for Improved Electrocatalytic Hydrogen Production Through Topochemical Deintercalation

Wenwu Zhong et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Article Chemistry, Multidisciplinary

Highly Electrocatalytic Ethylene Production from CO2 on Nanodefective Cu Nanosheets

Bingxing Zhang et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2020)

Article Engineering, Environmental

Binderless and Oxygen Vacancies Rich FeNi/Graphitized Mesoporous Carbon/Ni Foam for Electrocatalytic Reduction of Nitrate

Xiaotong Chen et al.

ENVIRONMENTAL SCIENCE & TECHNOLOGY (2020)

Article Multidisciplinary Sciences

Identification and elimination of false positives in electrochemical nitrogen reduction studies

Jaecheol Choi et al.

NATURE COMMUNICATIONS (2020)

Article Chemistry, Multidisciplinary

Single-Boron Catalysts for Nitrogen Reduction Reaction

Chuangwei Liu et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2019)

Article Multidisciplinary Sciences

Managing nitrogen to restore water quality in China

ChaoQing Yu et al.

NATURE (2019)

Article Multidisciplinary Sciences

Electrochemical synthesis of nitric acid from air and ammonia through waste utilization

Yuting Wang et al.

NATIONAL SCIENCE REVIEW (2019)

Article Chemistry, Multidisciplinary

Selective CO2 Electroreduction to Ethylene and Multicarbon Alcohols via Electrolyte-Driven Nanostructuring

Dunfeng Gao et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2019)

Article Multidisciplinary Sciences

Boosting selective nitrogen reduction to ammonia on electron-deficient copper nanoparticles

Yun-Xiao Lin et al.

NATURE COMMUNICATIONS (2019)

Article Multidisciplinary Sciences

Highly efficient decomposition of ammonia using high-entropy alloy catalysts

Pengfei Xie et al.

NATURE COMMUNICATIONS (2019)

Article Chemistry, Multidisciplinary

Electrochemical Ammonia Synthesis and Ammonia Fuel Cells

Feng Jiao et al.

ADVANCED MATERIALS (2019)

Article Chemistry, Multidisciplinary

Pothole-rich Ultrathin WO3 Nanosheets that Trigger N≡N Bond Activation of Nitrogen for Direct Nitrate Photosynthesis

Youwen Liu et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2019)

Review Chemistry, Multidisciplinary

How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully

Cheng Tang et al.

CHEMICAL SOCIETY REVIEWS (2019)

Review Chemistry, Multidisciplinary

Strain engineering of metal-based nanomaterials for energy electrocatalysis

Zhonghong Xia et al.

CHEMICAL SOCIETY REVIEWS (2019)

Review Chemistry, Multidisciplinary

Electrochemical nitrogen fixation and utilization: theories, advanced catalyst materials and system design

Wenhan Guo et al.

CHEMICAL SOCIETY REVIEWS (2019)

Review Chemistry, Physical

Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia

Bryan H. R. Suryanto et al.

NATURE CATALYSIS (2019)

Review Chemistry, Physical

Defect chemistry in 2D materials for electrocatalysis

Tao Sun et al.

MATERIALS TODAY ENERGY (2019)

Review Chemistry, Physical

Electrocatalytic reduction of nitrate: Fundamentals to full-scale water treatment applications

Sergi Garcia-Segura et al.

APPLIED CATALYSIS B-ENVIRONMENTAL (2018)