4.1 Article

Predicting hydrogen storage in MOFs via machine learning

期刊

PATTERNS
卷 2, 期 7, 页码 -

出版社

CELL PRESS
DOI: 10.1016/j.patter.2021.100291

关键词

-

资金

  1. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy [DE-EE0007046]
  2. NSF [1531752 MRI]

向作者/读者索取更多资源

The study predicted the H-2 capacities of a large number of metal-organic frameworks using machine learning, identifying MOFs with the potential to surpass existing materials. These MOFs are typically hypothetical compounds with low density, high surface areas, void fractions, and pore volumes. The most important features for predicting H-2 uptake were found to be pore volume and void fraction.
The H-2 capacities of a diverse set of 918,734 metal-organic frameworks (MOFs) sourced from 19 databases is predicted via machine learning (ML). Using only 7 structural features as input, ML identifies 8,282 MOFs with the potential to exceed the capacities of state-of-the-art materials. The identified MOFs are predominantly hypothetical compounds having low densities (<0.31 g cm(-3)) in combination with high surface areas (>5,300 m(2) g(-1)), void fractions (similar to 0.90), and pore volumes (>3.3 cm(3) g(-1)). The relative importance of the input features are characterized, and dependencies on the ML algorithm and training set size are quantified. The most important features for predicting H-2 uptake are pore volume (for gravimetric capacity) and void fraction (for volumetric capacity). The ML models are available on the web, allowing for rapid and accurate predictions of the hydrogen capacities of MOFs from limited structural data; the simplest models require only a single crystallographic feature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据