4.6 Article

Low-energy optical properties of the nonmagnetic kagome metal CsV3Sb5

相关参考文献

注意:仅列出部分参考文献,下载原文获取全部文献信息。
Article Physics, Condensed Matter

Absence of local moments in the kagome metal KV3Sb5 as determined by muon spin spectroscopy

Eric M. Kenney et al.

Summary: Muon spin relaxation and rotation measurements on the newly discovered kagome metal KV3Sb5 reveal a local field dominated by weak magnetic disorder associated with nuclear moments and showing a modest temperature dependence consistent with bulk magnetic susceptibility. The absence of evidence for V4+ local moments suggests that further studies are needed to understand the physics underlying the recently reported giant unconventional anomalous Hall effect in this material.

JOURNAL OF PHYSICS-CONDENSED MATTER (2021)

Article Multidisciplinary Sciences

Rise and fall of Landau's quasiparticles while approaching the Mott transition

Andrej Pustogow et al.

Summary: This study reveals the persistent Fermi-liquid behavior in correlated metals at half filling for varying correlation strength upon approaching a Mott insulator, showing pronounced quadratic dependences and a puzzling elastic contribution. The emergence of a bad metal from resilient quasiparticles near the Mott transition is demonstrated, supported by a theoretical model for the optical response.

NATURE COMMUNICATIONS (2021)

Article Materials Science, Multidisciplinary

Superconductivity in the Z2 kagome metal KV3Sb5

Brenden R. Ortiz et al.

Summary: This study reports the observation of bulk superconductivity in single crystals of the two-dimensional kagome metal KV3Sb5, with further characterization of the normal state as a Z(2) topological metal using density functional theory (DFT) calculations. The presence of superconductivity in the AV(3)Sb(5) (A: K, Rb, Cs) family of compounds suggests a common feature across these materials, establishing them as a rich arena for studying the interplay between bulk superconductivity, topological surface states, and likely electronic density wave order in an exfoliable kagome lattice.

PHYSICAL REVIEW MATERIALS (2021)

Article Physics, Multidisciplinary

Superconductivity and Normal-State Properties of Kagome Metal RbV3Sb5 Single Crystals

Qiangwei Yin et al.

Summary: The discovery of superconductivity in RbV3Sb5 single crystals with V kagome lattice is reported, showing a superconducting transition at around 0.92K. Anomalies in properties at T* around 102-103K are observed, possibly linked to the formation of a charge ordering state. The drastic change and sign reversal of the Hall coefficient R-H at T* can be partially explained by enhanced mobility of hole-type carriers, with quantum oscillations indicating the presence of small Fermi surfaces with low effective mass.

CHINESE PHYSICS LETTERS (2021)

Article Physics, Multidisciplinary

Anisotropic Superconducting Properties of Kagome Metal CsV3Sb5

Shunli Ni et al.

Summary: The high-quality CsV3Sb5 single crystals exhibit excellent superconducting and mixed state properties, with a significant anisotropic ratio of Hc2(ab)/Hc2(c) and Hc1(ab)/Hc1(c) larger than 1. The orientation of the two-fold anisotropy in in-plane angular-dependent magnetoresistance displays a unique twist characteristic of the Kagome geometry at a characteristic temperature of around 2.8 K.

CHINESE PHYSICS LETTERS (2021)

Article Physics, Multidisciplinary

Highly Robust Reentrant Superconductivity in CsV3Sb5 under Pressure

Xu Chen et al.

Summary: This study demonstrates the superconducting performance and high robustness of structural stability of kagome CsV3Sb5 under high pressures, revealing the variation of Tc under different pressures. Changes in electronic structure and electron-phonon coupling may be responsible for the pressure-induced reentrant superconductivity.

CHINESE PHYSICS LETTERS (2021)

Article Physics, Multidisciplinary

Double Superconducting Dome and Triple Enhancement of Tc in the Kagome Superconductor CsV3Sb5 under High Pressure

K. Y. Chen et al.

Summary: The study reveals that the CDW transition in CsV3Sb5 decreases with pressure, with an unusual M-shaped double dome in the T-c(P) curve showing enhancement up to 8 K at 2 GPa. This indicates a strong competition between CDW-like order and SC, particularly in the intermediate pressure range of P-c1 <= P <= P-c2.

PHYSICAL REVIEW LETTERS (2021)

Article Materials Science, Multidisciplinary

Concurrence of anomalous Hall effect and charge density wave in a superconducting topological kagome metal

F. H. Yu et al.

Summary: A giant anomalous Hall effect (AHE) has been observed in kagome superconductor CsV3Sb5, with a conductivity reaching up to 2.1 x 10(4)Ω⁻¹ cm⁻¹, larger than most ferromagnetic metals. The emergence of AHE is strongly correlated with the higher-temperature charge-density-wave (CDW) transition, and AHE disappears when the CDW transition is completely suppressed under high pressure.

PHYSICAL REVIEW B (2021)

Article Materials Science, Multidisciplinary

Origin of charge density wave in the kagome metal CsV3Sb5 as revealed by optical spectroscopy

Xiaoxiang Zhou et al.

Summary: This study investigates the optical properties of CsV3Sb5 at various temperatures above and below the charge-density-wave transition. The presence of multiple Drude components is observed in the low-frequency optical conductivity above the CDW transition, with distinct origins attributed to different bands in the band structure. The opening of the CDW gap affects the broad Drude component significantly while leaving the narrow Drude component unaffected, highlighting the importance of saddle point nesting in driving the CDW instability in CsV3Sb5.

PHYSICAL REVIEW B (2021)

Article Materials Science, Multidisciplinary

Pressure-induced double superconducting domes and charge instability in the kagome metal KV3Sb5

Feng Du et al.

Summary: The study on KV3Sb5 reveals that with increasing pressure, the charge order progressively weakens and the superconducting transition temperature undergoes different degrees of changes. A superconducting dome is formed at around 10 GPa, while a smaller superconducting dome emerges beyond 10 GPa.

PHYSICAL REVIEW B (2021)

Article Materials Science, Multidisciplinary

Pressure-induced reemergence of superconductivity in the topological kagome metal CsV3Sb5

Zhuyi Zhang et al.

Summary: This study reports pressure-induced reemergence of superconductivity in CsV3Sb5, where the superconducting critical temperature initially increases and then decreases with pressure, forming a dome-shaped superconducting phase diagram. A new superconducting state emerges with further compression above 16.5 GPa, with T-c reaching a second maximum around 5.0 K and remaining stable up to 47.9 GPa. The reemergence of superconductivity in V-based superconductor is suggested to be attributed to a pressure-induced Lifshitz transition, supported by high-pressure synchrotron x-ray-diffraction measurements showing the stability of the pristine hexagonal phase up to 43.1 GPa.

PHYSICAL REVIEW B (2021)

Article Chemistry, Physical

WIEN2k: An APW+lo program for calculating the properties of solids

Peter Blaha et al.

JOURNAL OF CHEMICAL PHYSICS (2020)

Article Chemistry, Physical

Dirac fermions and flat bands in the ideal kagome metal FeSn

Mingu Kang et al.

NATURE MATERIALS (2020)

Review Multidisciplinary Sciences

Quantum spin liquids

C. Broholm et al.

SCIENCE (2020)

Article Multidisciplinary Sciences

Giant, unconventional anomalous Hall effect in the metallic frustrated magnet candidate, KV3Sb5

Shuo-Ying Yang et al.

SCIENCE ADVANCES (2020)

Article Physics, Multidisciplinary

Spin-Reorientation-Induced Band Gap in Fe3Sn2: Optical Signatures of Weyl Nodes

A. Biswas et al.

PHYSICAL REVIEW LETTERS (2020)

Article Physics, Multidisciplinary

CsV3Sb5: A Z2 Topological Kagome Metal with a Superconducting Ground State

Brenden R. Ortiz et al.

PHYSICAL REVIEW LETTERS (2020)

Article Physics, Multidisciplinary

Negative flat band magnetism in a spin-orbit-coupled correlated kagome magnet

Jia-Xin Yin et al.

NATURE PHYSICS (2019)

Article Multidisciplinary Sciences

Magnetic Weyl semimetal phase in a Kagome crystal

D. F. Liu et al.

SCIENCE (2019)

Article Materials Science, Multidisciplinary

New kagome prototype materials: discovery of KV3Sb5, RbV3Sb5, and CsV3Sb5

Brenden R. Ortiz et al.

PHYSICAL REVIEW MATERIALS (2019)

Article Multidisciplinary Sciences

Massive Dirac fermions in a ferromagnetic kagome metal

Linda Ye et al.

NATURE (2018)

Article Physics, Multidisciplinary

Flatbands and Emergent Ferromagnetic Ordering in Fe3Sn2 Kagome Lattices

Zhiyong Lin et al.

PHYSICAL REVIEW LETTERS (2018)

Article Physics, Multidisciplinary

Bad metals from fluctuating density waves

Luca V. Delacretaz et al.

SCIPOST PHYSICS (2017)

Article Materials Science, Multidisciplinary

Use of x-ray scattering functions in Kramers-Kronig analysis of reflectance

D. B. Tanner

PHYSICAL REVIEW B (2015)

Article Physics, Multidisciplinary

Unconventional Fermi Surface Instabilities in the Kagome Hubbard Model

Maximilian L. Kiesel et al.

PHYSICAL REVIEW LETTERS (2013)