4.6 Article

Universal Quantum Computing Using Electronuclear Wavefunctions of Rare-Earth Ions

期刊

PRX QUANTUM
卷 2, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PRXQuantum.2.010312

关键词

-

资金

  1. Swiss National Science Foundation (SNSF) [200021_166271]
  2. Swiss National Science Foundation (SNF) [200021_166271] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

The proposed scheme for universal quantum computing is based on Kramers rare-earth ions, utilizing their nuclear spins as passive qubits and actively switching on qubits optically. The implementation of controlled NOT (CNOT) gates relies on the magnetic dipole interaction between excited crystal field states. Compared to other proposals, such as the Si:P proposal, this scheme shows significantly improved gate times for CNOT gates.
We propose a scheme for universal quantum computing based on Kramers rare-earth ions. Their nuclear spins in the presence of a Zeeman-split electronic crystal field ground state act as passive qubits that store quantum information. The active qubits are switched on optically by fast coherent transitions to excited crystal field states with a magnetic moment, and the magnetic dipole interaction between these states is used to implement controlled NOT (CNOT) gates. We compare our proposal with others, noting particularly the much improved CNOT gate time as compared with a Si:P proposal, also relying on magnetic dipole interactions between active qubits, and rare-earth schemes depending on the dipole blockade for qubits spaced by more than of the order of 1 nm.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据