4.7 Article

Light and gas barrier properties of PLLA/metallic nanoparticles composite films

期刊

EUROPEAN POLYMER JOURNAL
卷 91, 期 -, 页码 10-20

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.eurpolymj.2017.03.043

关键词

Poly(L-lactide); Metallic nanoparticle, nanocomposites; Gas transport; Packaging

资金

  1. Basque Country Government [IT718-13, IT618-13]
  2. Basque Government

向作者/读者索取更多资源

Herein we attempt to provide a deeper understanding on the influence of metal oxide nanoparticle incorporation on the gas transport properties of resulting polymer-based nanocomposites. Polylactide has been used as a model biodegradable material to develop nanocomposites containing 1 v/v% of TiO2, SiO2, Fe2O3 and Al2O3 spherical particles. These nanoparticles were characterized by transmission electron microscopy (TEM), X-ray and.zeta-potential measurements. Thermal properties of nanocomposites were analyzed by differential scanning calorimetry (DSC), while scanning electron microscopy (SEM) has been used to correlate nanoparticle dispersion with both light and gas barrier properties. UV-Vis spectroscopy indicates a good UV-shielding performance of developed films. Water vapour transmission rate and oxygen permeability of nanocomposites were further determined and obtained results have been correlated to the effect of interactions between the incorporated nanoparticles and water/oxygen molecules. Taking into account that only 1% of nanoparticles have been added, noticeable improvement of the barrier character of polylactide to water vapour, up to 18%, and wet oxygen, up to 9%, have been observed. Finally, Maxwell, Bruggeman, Bottcher and Higuchi models have been applied for our two-phase mixed matrix membranes to predict the permeability of dry oxygen. Overall, the experimental findings here shown provide better understanding towards the design of membrane devices based on biodegradable materials with tailored light and gas permeability for specific industrial applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据