4.6 Article

Effects of water-based binders on electrochemical performance of manganese dioxide cathode in mild aqueous zinc batteries

期刊

CARBON ENERGY
卷 3, 期 3, 页码 473-481

出版社

WILEY
DOI: 10.1002/cey2.84

关键词

aqueous batteries; binder; carboxymethyl cellulose; cost-effective systems; PVdF; zinc batteries

向作者/读者索取更多资源

The study demonstrates that using sodium carboxymethyl cellulose (CMC) binder significantly improves the electrochemical performance of Zn/MnO2 aqueous batteries, offering desirable adhesion, wettability, and chemical stability.
In the majority of rechargeable batteries including lithium-ion batteries, polyvinylidene fluoride (PVdF) binders are the most commonly used binder for both anode and cathode. However, using PVdF binder requires the organic solvent of N-methyl-2-pyrrolidone which is expensive, volatile, combustible, toxic, and has poor recyclability. Therefore, switching to aqueous electrode processing routes with non-toxic binders would provide a great leap forward towards the realization of ideally fully sustainable and environmentally friendly electrochemical energy storage devices. Various water-soluble binders (aqueous binders) were characterized and compared to the performance of conventional PVdF. Our study demonstrates that the electrochemical performance of Zn/MnO2 aqueous batteries is significantly improved by using sodium carboxymethyl cellulose (CMC) binder. In addition, CMC binders offer desirable adhesion, good wettability, homogeneous material distribution, and strong chemical stability at certain pH levels (3.5-5) without any decomposition for long-cycle life.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据