4.6 Article

Enhanced electromagnetic wave absorption of magnetic Co nanoparticles/CNTs/EG porous composites with waterproof, flame-retardant and thermal management functions

相关参考文献

注意:仅列出部分参考文献,下载原文获取全部文献信息。
Article Engineering, Multidisciplinary

3D flower-like Co-based oxide composites with excellent wideband electromagnetic microwave absorption

Chenxi Wang et al.

Summary: By synthesizing hollow CoSnO3 in-situ between layers of self-assembled flower-like ZnCo2O4 in the solvothermal process, a new hybrid structure with multi-layer sheet morphology was formed, which enhances absorption performance by expanding the propagation path of electromagnetic waves.

COMPOSITES PART B-ENGINEERING (2021)

Article Engineering, Multidisciplinary

Morphology-control synthesis of polyaniline decorative porous carbon with remarkable electromagnetic wave absorption capabilities

Feng Zhang et al.

Summary: Porous carbon@polyaniline composites were synthesized and found to exhibit significantly enhanced electromagnetic wave absorption performance. This research provides a new option for low-cost, environmentally friendly electromagnetic absorbers and enriches the understanding of the electromagnetic loss mechanism of absorbers.

COMPOSITES PART B-ENGINEERING (2021)

Article Engineering, Environmental

Fire-retardant and thermal insulating honeycomb-like NiS2/SnS2 nanosheets @ 3D porous carbon hybrids for high-efficiency electromagnetic wave absorption

Yanyan Dong et al.

Summary: Inspired by nature, popcorn-derived honeycomb-like NiS2/SnS2 nanosheets @ 3D porous carbon hybrids were fabricated through hydrothermal and carbonization methods. These materials exhibit outstanding electromagnetic wave absorption performance and multifunctionality, enabling practical stealth applications in harsh environments.

CHEMICAL ENGINEERING JOURNAL (2021)

Article Nanoscience & Nanotechnology

Lotus Leaf-Derived Gradient Hierarchical Porous C/MoS2 Morphology Genetic Composites with Wideband and Tunable Electromagnetic Absorption Performance

Fei Pan et al.

Summary: Lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites were successfully fabricated with excellent electromagnetic absorption performance. A brand-new dielectric sum-quotient model was proposed to analyze the electromagnetic performance of the non-magnetic material system. By considering the dielectric constant and specific sum and quotient of permittivity, suitable materials with designable electromagnetic absorption performance could be sought through material genetic engineering.

NANO-MICRO LETTERS (2021)

Article Chemistry, Physical

Improved synergistic effect for achieving ultrathin microwave absorber of 1D Co nanochains/2D carbide MXene nanocomposite

Fei Pan et al.

Summary: A multilayer-sandwiched Ti3C2Tx MXene heterostructure decorated with one-dimensional Co nanochains was successfully synthesized through a facile in situ process, realizing electromagnetic wave absorbers with ultrathin matching thickness and excellent absorbing capability. The MXene/Co nanochains composites achieved a minimum reflection loss of -46.48 dB with an ultrathin matching thickness of only 1.02 mm at 16.75 GHz, with the absorption mechanism involving conductive loss, polarization loss, magnetic loss, and interlacing magnetic flux field effect.

CARBON (2021)

Article Chemistry, Physical

Magnetic porous N-doped carbon composites with adjusted composition and porous microstructure for lightweight microwave absorbers

Panbo Liu et al.

Summary: This study reported the fabrication of metal porous N-doped carbon absorbers using a coordination assembly strategy, which demonstrated excellent absorption performance through structure design and composition control.

CARBON (2021)

Article Chemistry, Physical

Design of Ti3C2Tx/TiO2/PANI multi-layer composites for excellent electromagnetic wave absorption performance

Xuran Gao et al.

Summary: The Ti3C2Tx/TiO2/PANI composites exhibit excellent electromagnetic wave absorption properties with strong reflection loss, thin thickness, and wide absorption bandwidth, making them promising candidates for EMW absorbers.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2021)

Article Chemistry, Physical

Synthesis of 3D flower-like ZnO/ZnCo2O4 composites with the heterogeneous interface for excellent electromagnetic wave absorption properties

Jianwei Wang et al.

Summary: This study improved the electromagnetic wave absorption performance by preparing ZnO hollow spheres and ZnO/ZnCo2O4 composites, and found that the addition of ZnO hollow spheres significantly influenced the properties of the absorbing material. The ZnO/ZnCo2O4 composites showed the best absorption performance when adding 5 mg of ZnO hollow spheres.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2021)

Article Chemistry, Multidisciplinary

Multifunctional Magnetic Ti3C2Tx MXene/Graphene Aerogel with Superior Electromagnetic Wave Absorption Performance

Luyang Liang et al.

Summary: The study successfully developed a three-dimensional dielectric/magnetic aerogel with superior absorption performance, broad absorption bandwidth, and excellent electromagnetic wave absorbing capabilities, demonstrating potential for stable and durable electromagnetic applications.

ACS NANO (2021)

Article Chemistry, Multidisciplinary

Hollow Engineering to Co@N-Doped Carbon Nanocages via Synergistic Protecting-Etching Strategy for Ultrahigh Microwave Absorption

Panbo Liu et al.

Summary: A controlled synergistic protecting-etching strategy was proposed to construct hollow Co@N-doped carbon nanocages with uniform heterojunctions, addressing the shortcomings of using sacrificing templates or corrosive agents and exhibiting superior microwave absorption performance. The strategy not only provides inspiration for creating hollow void inside other MOFs crystals, but also broadens the candidates for lightweight and high-efficient microwave absorbers.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Chemistry, Physical

Self-assembled MoS2/3D worm-like expanded graphite hybrids for high-efficiency microwave absorption

Zhicheng Liu et al.

Summary: In this work, 3D worm-like expanded graphite/2D MoS2 nanosheets hybrids were successfully synthesized through a hydrothermal process, demonstrating excellent electromagnetic wave absorption performance. The MoS2/EG hybrids showed efficient wave absorption capability and an ultra-low filling ratio in the study.

CARBON (2021)

Review Nanoscience & Nanotechnology

Developing MXenes from Wireless Communication to Electromagnetic Attenuation

Peng He et al.

Summary: MXenes, as a novel family of 2D materials, have shown excellent properties for wireless communication and EM attenuation. Recent advances on MXene-based materials with different structural designs for wireless communication, EMI shielding, and EM wave absorption clearly reveal the relationship governing the effectiveness. Challenges and guidelines for designing MXene-based materials for industrial application and foundational research are highlighted for future directions.

NANO-MICRO LETTERS (2021)

Article Chemistry, Physical

Electrostatic self-assembly construction of 2D MoS2 wrapped hollow Fe3O4 nanoflowers@1D carbon tube hybrids for self-cleaning highperformance microwave absorbers

Xiang Zhang et al.

Summary: Recent research has shown an urgent need for high-performance microwave absorbers to tackle electromagnetic pollution. By constructing heterostructure materials through stacking low dimensional materials, superior microwave absorption performance can be achieved.

CARBON (2021)

Article Chemistry, Physical

Magnetic Fe3S4 LTMCs micro-flowers@ wax gourd aerogel-derived carbon hybrids as efficient and sustainable electromagnetic absorber

Fei Pan et al.

Summary: Magnetic Fe3S4 LTMCs micro-flowers@ wax gourd aerogel-derived carbon composites exhibit superior electromagnetic absorption properties and potential radar wave absorption effects in practical applications.

CARBON (2021)

Article Chemistry, Physical

Morphology-controllable synthesis of polyurethane-derived highly cross-linked 3D networks for multifunctional and efficient electromagnetic wave absorption

Xiaojie Zhu et al.

Summary: This research focused on the morphology modulation of multi-level structures and multifunctional design of composites for electromagnetic wave absorption. By utilizing abandoned polyurethane as sacrificial template, Fe/Fe2O3@porous carbon composites with highly cross-linked 3D structures were synthesized, showing excellent absorption performance attributed to a three-dimensional magnetic conductive network. The materials not only exhibited superior impedance matching and dual-loss mechanisms, but also possessed multiple functionalities such as low density, excellent mechanical properties, and high thermal management capabilities.

CARBON (2021)

Article Engineering, Environmental

MXene-based accordion 2D hybrid structure with Co9S8/C/Ti3C2Tx as efficient electromagnetic wave absorber

Tianqi Hou et al.

Summary: The research successfully fabricated a multilayer structure Co9S8/C/Ti(3)C(2)Tx hybrid material, demonstrating impressive electromagnetic absorption performance. It shows a maximum reflection loss of -50.07 dB at 7.6 GHz under a matching thickness of 2.51 mm, with an effective absorption bandwidth (RL <= -10 dB) covering 4.24 GHz.

CHEMICAL ENGINEERING JOURNAL (2021)

Article Engineering, Environmental

Honeycomb-like NiCo2O4@MnO2 nanosheets array/3D porous expanded graphite hybrids for high-performance microwave absorber with hydrophobic and flame-retardant functions

Xiang Zhang et al.

Summary: This study successfully developed a multifunctional NiCo2O4@MnO2/EG nanosheets array microwave absorber, showing excellent microwave absorption, hydrophobicity, and flame resistance properties. The material achieved better performance through the synergistic effect of multiple heterointerfaces, opening up new prospects for developing novel microwave absorbers to meet practical application needs.

CHEMICAL ENGINEERING JOURNAL (2021)

Review Materials Science, Multidisciplinary

Electromagnetic absorber converting radiation for multifunction

Min Zhang et al.

Summary: This review article discusses wearable electromagnetic (EM) materials, covering design strategies, EM response mechanisms, performance improvements, and smart EM device construction. It highlights two main functions of wearable EM devices and addresses current issues, potential opportunities, and future directions for these devices.

MATERIALS SCIENCE & ENGINEERING R-REPORTS (2021)

Article Nanoscience & Nanotechnology

Flexible and Waterproof 2D/1D/0D Construction of MXene-Based Nanocomposites for Electromagnetic Wave Absorption, EMI Shielding, and Photothermal Conversion

Zhen Xiang et al.

Summary: An electrostatic assembly approach was used to fabricate Ti3C2Tx/CNTs/Co nanocomposites, showcasing outstanding electromagnetic wave absorption, EMI shielding, and photothermal conversion performance, making them highly promising for the next-generation intelligent electromagnetic attenuation system.

NANO-MICRO LETTERS (2021)

Article Materials Science, Composites

Covalent organic framework-derived hollow core-shell Fe/Fe3O4@porous carbon composites with corrosion resistance for lightweight and efficient microwave absorption

Xiaojie Zhu et al.

Summary: This study successfully synthesized hollow core-shell Fe/Fe3O4@porous carbon composites with excellent electromagnetic wave absorption properties. The composite inherits the porous structure and high specific surface area of COF material, facilitating multiple reflections and scattering of electromagnetic waves to improve impedance matching and demonstrate efficient electromagnetic absorption performance at ultra-thin matching thickness.

COMPOSITES COMMUNICATIONS (2021)

Article Chemistry, Physical

Electrostatically self-assembled two-dimensional magnetized MXene/hollow Fe3O4 nanoparticle hybrids with high electromagnetic absorption performance and improved impendence matching

Baiwen Deng et al.

Summary: In this study, lightweight and highly absorbent two-dimensional magnetized MXene hybrids were synthesized, showing excellent electromagnetic wave absorption performance and making them promising candidates for high-performance electromagnetic microwave absorbers.

JOURNAL OF MATERIALS CHEMISTRY A (2021)

Article Nanoscience & Nanotechnology

Balancing Dielectric Loss and Magnetic Loss in Fe-NiS2/NiS/PVDF Composites toward Strong Microwave Reflection Loss

Na Gao et al.

ACS APPLIED MATERIALS & INTERFACES (2020)

Article Chemistry, Physical

Advances in photocatalytic self-cleaning, superhydrophobic and electromagnetic interference shielding textile treatments

Esfandiar Pakdel et al.

ADVANCES IN COLLOID AND INTERFACE SCIENCE (2020)

Article Engineering, Environmental

Magnetic CoFe alloy@C nanocomposites derived from ZnCo-MOF for electromagnetic wave absorption

Yanqin Wang et al.

CHEMICAL ENGINEERING JOURNAL (2020)

Article Engineering, Environmental

A lightweight and conductive MXene/graphene hybrid foam for superior electromagnetic interference shielding

Zhimin Fan et al.

CHEMICAL ENGINEERING JOURNAL (2020)

Article Nanoscience & Nanotechnology

Sandwich-Like Fe&TiO2@C Nanocomposites Derived from MXene/Fe-MOFs Hybrids for Electromagnetic Absorption

Baiwen Deng et al.

NANO-MICRO LETTERS (2020)

Article Nanoscience & Nanotechnology

Microwave Absorption of Crystalline Fe/MnO@C Nanocapsules Embedded in Amorphous Carbon

Gaihua He et al.

NANO-MICRO LETTERS (2020)

Article Chemistry, Physical

Rational design of hollow nanosphere γ-Fe2O3/MWCNTs composites with enhanced electromagnetic wave absorption

Zhen Xiang et al.

JOURNAL OF ALLOYS AND COMPOUNDS (2020)

Article Nanoscience & Nanotechnology

Multifunctional Bulk Hybrid Foam for Infrared Stealth, Thermal Insulation, and Microwave Absorption

Weihua Gu et al.

ACS APPLIED MATERIALS & INTERFACES (2020)

Article Materials Science, Composites

Rational design of hierarchical porous Fe3O4/rGO composites with lightweight and high-efficiency microwave absorption

Zhicheng Liu et al.

COMPOSITES COMMUNICATIONS (2020)

Review Nanoscience & Nanotechnology

Biomass-Derived Porous Carbon-Based Nanostructures for Microwave Absorption

Huanqin Zhao et al.

NANO-MICRO LETTERS (2019)

Review Chemistry, Multidisciplinary

Electromagnetic Response and Energy Conversion for Functions and Devices in Low-Dimensional Materials

Mao-Sheng Cao et al.

ADVANCED FUNCTIONAL MATERIALS (2019)

Article Engineering, Environmental

Preparation and electromagnetic wave absorption performance of Fe3Si/SiC@SiO2 nanocomposites

Meng Zhang et al.

CHEMICAL ENGINEERING JOURNAL (2019)

Article Engineering, Environmental

Synthesis of pomegranate-like Mo2C@C nanospheres for highly efficient microwave absorption

Yahui Wang et al.

CHEMICAL ENGINEERING JOURNAL (2019)

Article Engineering, Multidisciplinary

Electrostatic self-assembly synthesis of ZnFe2O4 quantum dots (ZnFe2O4@C) and electromagnetic microwave absorption

Zhenguo Gao et al.

COMPOSITES PART B-ENGINEERING (2019)

Review Chemistry, Physical

Bio-inspired sustainable and durable superhydrophobic materials: from nature to market

Mehran Ghasemlou et al.

JOURNAL OF MATERIALS CHEMISTRY A (2019)

Article Chemistry, Multidisciplinary

Tunable High-Performance Microwave Absorption of Co1-xS Hollow Spheres Constructed by Nanosheets within Ultralow Filler Loading

Xiao-Juan Zhang et al.

ADVANCED FUNCTIONAL MATERIALS (2018)

Article Engineering, Environmental

Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior

Guanglei Wu et al.

CHEMICAL ENGINEERING JOURNAL (2018)

Article Chemistry, Multidisciplinary

MOFs-Derived Hollow Co/C Microspheres with Enhanced Microwave Absorption Performance

Zhennan Li et al.

ACS SUSTAINABLE CHEMISTRY & ENGINEERING (2018)

Article Chemistry, Multidisciplinary

Self-Assembly Core-Shell Graphene-Bridged Hollow MXenes Spheres 3D Foam with Ultrahigh Specific EM Absorption Performance

Xinliang Li et al.

ADVANCED FUNCTIONAL MATERIALS (2018)

Review Chemistry, Multidisciplinary

Nanoarchitectured Design of Porous Materials and Nanocomposites from Metal-Organic Frameworks

Yusuf Valentino Kaneti et al.

ADVANCED MATERIALS (2017)

Article Nanoscience & Nanotechnology

Laminated and Two-Dimensional Carbon-Supported Microwave Absorbers Derived from MXenes

Meikang Han et al.

ACS APPLIED MATERIALS & INTERFACES (2017)

Article Nanoscience & Nanotechnology

MOF-Derived Porous Co/C Nanocomposites with Excellent Electromagnetic Wave Absorption Properties

Yinyun Lu et al.

ACS APPLIED MATERIALS & INTERFACES (2015)

Article Chemistry, Physical

Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption

Rong Qiang et al.

JOURNAL OF MATERIALS CHEMISTRY A (2015)

Article Chemistry, Multidisciplinary

Adhesion behaviors on superhydrophobic surfaces

Huan Zhu et al.

CHEMICAL COMMUNICATIONS (2014)

Editorial Material Chemistry, Physical

Definitions for Hydrophilicity, Hydrophobicity, and Superhydrophobicity: Getting the Basics Right

Kock-Yee Law

JOURNAL OF PHYSICAL CHEMISTRY LETTERS (2014)

Article Chemistry, Physical

The Chemical and structural analysis of graphene oxide with different degrees of oxidation

Karthikeyan Krishnamoorthy et al.

CARBON (2013)

Article Physics, Applied

Microwave magnetic properties of Co50/(SiO2)50 nanoparticles

MZ Wu et al.

APPLIED PHYSICS LETTERS (2002)