4.2 Article

Ticking-clock performance enhanced by nonclassical temporal correlations

期刊

PHYSICAL REVIEW RESEARCH
卷 3, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevResearch.3.033051

关键词

-

向作者/读者索取更多资源

The study finds that quantum correlations in ticking clock models can surpass classical bounds, violating Leggett-Garg-type temporal inequalities for finite sequences without requiring input.
We investigate the role of nonclassical temporal correlations in enhancing the performance of ticking clocks in a discrete-time scenario. We show that the problem of optimal models for ticking clocks is related to the violation of Leggett-Garg-type temporal inequalities formulated in terms of, possibly invasive, sequential measurements, but on a system with a bounded memory capacity. Ticking clocks inspire the derivation of a family of temporal inequalities showing a gap between classical and quantum correlations, despite involving no input. We show that quantum ticking-clock models achieving accuracy beyond the classical bound are also those violating Leggett-Garg-type temporal inequalities for finite sequences and we investigate their continuous-time limit. Interestingly, we show that optimal classical clock models in the discrete-time scenario do not have a well-defined continuous-time limit, a feature that is absent in quantum models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据