4.7 Article

Application of ensemble pharmacophore-based virtual screening to the discovery of novel antimitotic tubulin inhibitors

期刊

出版社

ELSEVIER
DOI: 10.1016/j.csbj.2021.07.039

关键词

Ensemble pharmacophore; Virtual screening; Tubulin; Colchicine; Drug design; Antimitotic

资金

  1. Enlighten Your Research LatinAmerica2Europe (EYR-LA2EU) programme
  2. MinCiencias
  3. University of Antioquia
  4. Ruta N, Colombia
  5. Max Planck Society, Germany
  6. Consejeria de Educacion de la Junta de Castilla y Leon [SA262P18, SA116P20]
  7. Spanish Ministry of Science, Innovation and Universities [RTI2018-099474-BI00]
  8. EU's European Regional Development Fund-FEDER
  9. CONICYTPCI [REDES190074]
  10. FONDECYT [11180604]
  11. Spanish Ministry of Economy and Competitiveness project CODEC2 [TIN2015-63562-R]
  12. FEDER
  13. CYTED [517RT0529]

向作者/读者索取更多资源

Tubulin is a validated target for various drugs, but there is a lack of anticancer drugs targeting the colchicine site. By utilizing X-ray structures of tubulin in complex with ligands, researchers designed a novel tubulin modulator by combining scaffolds that best fit the ensemble pharmacophore-representation.
Tubulin is a well-validated target for herbicides, fungicides, anti-parasitic, and anti-tumor drugs. Many of the non-cancer tubulin drugs bind to its colchicine site but no colchicine-site anticancer drug is available. The colchicine site is composed of three interconnected sub-pockets that fit their ligands and modify others' preference, making the design of molecular hybrids (that bind to more than one sub-pocket) a difficult task. Taking advantage of the more than eighty published X-ray structures of tubulin in complex with ligands bound to the colchicine site, we generated an ensemble of pharmacophore representations that flexibly sample the interactional space between the ligands and target. We searched the ZINC database for scaffolds able to fit several of the subpockets, such as tetrazoles, sulfonamides and diarylmethanes, selected roughly similar to 8000 compounds with favorable predicted properties. A Flexi-pharma virtual screening, based on ensemble pharmacophore, was performed by two different methodologies. Combining the scaffolds that best fit the ensemble pharmacophore-representation, we designed a new family of ligands, resulting in a novel tubulin modulator. We synthesized tetrazole 5 and tested it as a tubulin inhibitor in vitro. In good agreement with the design principles, it demonstrated micromolar activity against in vitro tubulin polymerization and nanomolar anti-proliferative effect against human epithelioid carcinoma HeLa cells through microtubule disruption, as shown by immunofluorescence confocal microscopy. The integrative methodology succedes in the design of new scaffolds for flexible proteins with structural coupling between pockets, thus expanding the way in which computational methods can be used as significant tools in the drug design process. (C) 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据