4.7 Article

Development of an in-line magnetometer for flow chemistry and its demonstration for magnetic nanoparticle synthesis

期刊

LAB ON A CHIP
卷 21, 期 19, 页码 3775-3783

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1lc00425e

关键词

-

资金

  1. EPSRC UK [EP/M015157/1]

向作者/读者索取更多资源

Despite the widespread use of magnetic nanoparticles, synthesizing particles to fully exploit their properties for each application remains challenging. Flow reactors offer potential for large-scale production and high-throughput screening, yet have not been utilized in magnetic nanoparticle synthesis. The developed flow magnetometer enables real-time characterization of magnetic nanoparticles in solution in flow reactors, enhancing continuous quality control and high-throughput screening.
Despite the wide usage of magnetic nanoparticles, it remains challenging to synthesise particles with properties that exploit each application's full potential. Time consuming experimental procedures and particle analysis hinder process development, which is commonly constrained to a handful of experiments without considering particle formation kinetics, reproducibility and scalability. Flow reactors are known for their potential of large-scale production and high-throughput screening of process parameters. These advantages, however, have not been utilised for magnetic nanoparticle synthesis where particle characterisation is performed, with a few exceptions, post-synthesis. To overcome this bottleneck, we developed a highly sensitive magnetometer for flow reactors to characterise magnetic nanoparticles in solution in-line and in real-time using alternating current susceptometry. This flow magnetometer enriches the flow-chemistry toolbox by facilitating continuous quality control and high-throughput screening of magnetic nanoparticle syntheses. The sensitivity required to monitor magnetic nanoparticle syntheses at the typically low concentrations (<100 mM of Fe) was achieved by comparing the signals induced in the sample and reference cell, each of which contained near-identical pairs of induction and pick-up coils. The reference cell was filled only with air, whereas the sample cell was a flow cell allowing sample solution to pass through. Balancing the flow and reference cell impedance with a newly developed electronic circuit was pivotal for the magnetometer's sensitivity. To showcase its potential, the flow magnetometer was used to monitor two iron oxide nanoparticle syntheses with well-known particle formation kinetics, i.e., co-precipitation syntheses with sodium carbonate and sodium hydroxide as base, which have been previously studied via synchrotron X-ray diffraction. The flow magnetometer facilitated batch (on-line) and flow (in-line) synthesis monitoring, providing new insights into the particle formation kinetics as well as, effect of temperature and pH. The compact lab-scale flow device presented here, opens up new possibilities for magnetic nanoparticle synthesis and manufacturing, including 1) early stage reaction characterisation 2) process monitoring and control and 3) high-throughput screening in combination with flow reactors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据