4.8 Article

Neutralization of SARS-CoV-2 variants by convalescent and BNT162b2 vaccinated serum

相关参考文献

注意:仅列出部分参考文献,下载原文获取全部文献信息。
Article Multidisciplinary Sciences

Spike mutation D614G alters SARS-CoV-2 fitness

Jessica A. Plante et al.

Summary: The D614G substitution in the SARS-CoV-2 spike protein enhances viral replication and infectivity in human lung epithelial cells, primary airway tissues, and hamsters. This variant may increase transmission in the upper respiratory tract and doesn't seem to significantly reduce vaccine efficacy. Further research on therapeutic antibodies targeting the circulating G614 virus is recommended.

NATURE (2021)

Review Biochemistry & Molecular Biology

COVID-19 vaccines: where we stand and challenges ahead

Guido Forni et al.

Summary: The development of vaccines has made significant progress, but still faces various challenges, including different target populations, immunological adaptability of vaccines, and production and distribution issues. To ensure equitable access, protection of diverse subjects, and immunity against viral variants, multiple vaccines may be needed in the long run.

CELL DEATH AND DIFFERENTIATION (2021)

Article Microbiology

Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition

Allison J. Greaney et al.

Summary: Antibodies targeting the SARS-CoV-2 spike receptor-binding domain (RBD) are key in neutralizing antibody responses, and a deep mutational scanning method was used to assess the impact of all amino-acid mutations in the RBD on antibody binding with 10 human monoclonal antibodies. The study identified the clustered escape mutations in different surfaces of the RBD that correspond to structurally defined antibody epitopes, showing that even antibodies targeting the same surface can have distinct escape mutations.

CELL HOST & MICROBE (2021)

Article Cell Biology

Cross-reactivity of SARS-CoV structural protein antibodies against SARS-CoV-2

Timothy A. Bates et al.

Summary: Antibodies raised against SARS-CoV display some level of reactivity to SARS-CoV-2, but only partial cross-neutralization is observed. This finding provides critical information for further study and vaccine strategies for COVID-19, establishing a set of antibodies with known reactivity to both SARS-CoV and SARS-CoV-2.

CELL REPORTS (2021)

Article Cell Biology

D614G Mutation Alters SARS-CoV-2 Spike Conformation and Enhances Protease Cleavage at the S1/S2 Junction

Sophie M-C Gobeil et al.

Summary: The study found that the mutation variant G614 of SARS-CoV-2 leads to significant changes in the protein structure, resulting in altered positioning ratio of RBD, which may have implications for vaccine design.

CELL REPORTS (2021)

Review Microbiology

The variant gambit: COVID-19's next move

Jessica A. Plante et al.

Summary: Despite the development of vaccines, COVID-19 caused by SARS-CoV-2 continues to be a global concern due to the emergence of new variants, raising worries about increased spread and potential impacts on immunity.

CELL HOST & MICROBE (2021)

Editorial Material Medicine, General & Internal

SARS-CoV-2 Variants of Concern in the United States-Challenges and Opportunities

Rochelle P. Walensky et al.

Summary: The Viewpoint discusses the measures taken by federal agencies to rapidly characterize emerging coronavirus variants and monitor their implications for national pandemic response and control. This includes assessment of the ongoing effectiveness of current diagnostics, therapeutics, and vaccines.

JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION (2021)

Editorial Material Medicine, General & Internal

Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence

Ester C. Sabino et al.

LANCET (2021)

Article Multidisciplinary Sciences

Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies

Dami A. Collier et al.

Summary: The B.1.1.7 variant of SARS-CoV-2 exhibited reduced neutralization by vaccines and antibodies from recovered COVID-19 patients, with a more substantial loss seen when introducing the E484K mutation. This mutation poses a threat to the efficacy of the BNT162b2 vaccine.

NATURE (2021)

Article Multidisciplinary Sciences

Detection of a SARS-CoV-2 variant of concern in South Africa

Houriiyah Tegally et al.

Summary: The article describes a newly emerged lineage of SARS-CoV-2, 501Y.V2, characterized by eight mutations in the spike protein, which may result in increased transmissibility or immune escape. This lineage originated in South Africa and quickly became dominant in Eastern Cape, Western Cape, and KwaZuluNatal provinces within weeks.

NATURE (2021)

Article Immunology

Robust SARS-CoV-2-specific T cell immunity is maintained at 6 months following primary infection

Jianmin Zuo et al.

Summary: The study shows that functional SARS-CoV-2-specific T cell responses are retained and robust at 6 months following infection, with higher T cell responses observed in donors who had experienced symptomatic infection. Levels of nucleoprotein-specific T cells were correlated with nucleoprotein-specific antibody levels, providing insights into the persistence and correlation of immune responses.

NATURE IMMUNOLOGY (2021)

Article Biochemistry & Molecular Biology

Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera

Xuping Xie et al.

Summary: The study found that human sera from recipients of the BNT162b2 vaccine can neutralize SARS-CoV-2 viruses containing key spike mutations from the newly emerged UK and SA variants.

NATURE MEDICINE (2021)

Letter Medicine, General & Internal

Neutralizing Activity of BNT162b2-Elicited Serum

Yang Liu et al.

NEW ENGLAND JOURNAL OF MEDICINE (2021)

Article Multidisciplinary Sciences

Estimation of the fraction of COVID-19 infected people in US states and countries worldwide

Jungsik Noh et al.

Summary: The study found that under-ascertainment of COVID-19 cases is universal, with actual cumulative cases estimated to be 5-20 times greater than confirmed cases in some countries. Their machine learning framework showed reliability in estimating the number of infections.

PLOS ONE (2021)

Article Multidisciplinary Sciences

Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine-elicited human sera

Alexander Muik et al.

Summary: A new SARS-CoV-2 lineage B.1.1.7 has emerged in the UK, which is more transmissible and faster spreading than other strains. However, a study found that the BNT162b2 vaccine offers largely preserved protection against the B.1.1.7 lineage, despite some reduced neutralizing titers.

SCIENCE (2021)

News Item Medicine, General & Internal

Covid-19: Novavax vaccine efficacy is 86% against UK variant and 60% against South African variant

Elisabeth Mahase

BMJ-BRITISH MEDICAL JOURNAL (2021)

Article Biochemistry & Molecular Biology

Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies

Delphine Planas et al.

Summary: The ability of convalescent sera from individuals with coronavirus disease 2019 and those vaccinated with BNT162b2 to neutralize SARS-CoV-2 variants B1.1.7 and B.1.351 decreases, but increases after two vaccine doses. The study found that the B.1.1.7 and B.1.351 variants may have acquired partial resistance to neutralizing antibodies generated by natural infection or vaccination, particularly in individuals with low antibody levels. This suggests that the B.1.351 variant may pose a greater risk of infection in immunized individuals.

NATURE MEDICINE (2021)

Article Biochemistry & Molecular Biology

Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection

David S. Khoury et al.

Summary: The level of neutralizing antibodies is closely related to immune protection against COVID-19, playing a crucial role in protecting against detected infection and severe infection. Studies have shown that neutralizing titers will decline over time after vaccination, leading to decreased protection against SARS-CoV-2 infection.

NATURE MEDICINE (2021)

Letter Medicine, General & Internal

Antibody Persistence through 6 Months after the Second Dose of mRNA-1273 Vaccine for Covid-19

Nicole Doria-Rose et al.

NEW ENGLAND JOURNAL OF MEDICINE (2021)

Article Multidisciplinary Sciences

Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after infection

Zijun Wang et al.

Summary: Despite challenges posed by COVID-19 variants, convalescent individuals receiving mRNA vaccines exhibit robust and long-lasting immune responses against circulating SARS-CoV-2 variants, providing hope for effective control of the pandemic.

NATURE (2021)

Article Medicine, General & Internal

First Case of 2019 Novel Coronavirus in the United States

Michelle L. Holshue et al.

NEW ENGLAND JOURNAL OF MEDICINE (2020)

Article Microbiology

A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology

Andrew Rambaut et al.

NATURE MICROBIOLOGY (2020)

Article Multidisciplinary Sciences

Convergent antibody responses to SARS-CoV-2 in convalescent individuals

Davide F. Robbiani et al.

NATURE (2020)

Article Multidisciplinary Sciences

SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies

Christopher O. Barnes et al.

NATURE (2020)

Article Medicine, General & Internal

Risk Factors Associated With In-Hospital Mortality in a US National Sample of Patients With COVID-19

Ning Rosenthal et al.

JAMA NETWORK OPEN (2020)

Article Biochemical Research Methods

Sequencing thousands of single-cell genomes with combinatorial indexing

Sarah A. Vitak et al.

NATURE METHODS (2017)

Article Biotechnology & Applied Microbiology

Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition

Andrew Adey et al.

GENOME BIOLOGY (2010)