4.7 Article

Efficient Continuous Big Data Integrity Checking for Decentralized Storage

期刊

出版社

IEEE COMPUTER SOC
DOI: 10.1109/TNSE.2021.3068261

关键词

Big Data; Cloud computing; Data integrity; Security; Blockchain; Servers; Metadata; Big data; data integrity checking; decentralized storage; sampling; verifiable random function

资金

  1. National Natural Science Foundation of China [61671030]
  2. China Postdoctoral Science Foundation [2019M660377]
  3. National Key Research and Development Program of China [2020YFB2009501]
  4. Engineering Research Center of Intelligent Perception and Autonomous Control, Ministry of Education

向作者/读者索取更多资源

Decentralized storage powered by blockchain is a new trend, but unqualified storage providers may face security threats, requiring continuous data integrity to be guaranteed, which can incur heavy burdens of both communication and computation.
Decentralized storage powered by blockchain is becoming a new trend that allows data owners to outsource their data to remote storage resources offered by various storage providers. Unfortunately, unqualified storage providers easily encounter unpredictable downtime due to security threats, such as malicious attacks or system failures, which is unacceptable in many real-time or data-driven applications. As a result, continuous data integrity should be guaranteed in decentralized storage, which ensures that data is intact and available for the entire storage period. However, this requires frequent checking for long time periods and incurs heavy burdens of both communication and computation, especially in a big data scenario. In this paper, we propose an efficient continuous big data integrity checking approach for decentralized storage. We design a data-time sampling strategy that randomly checks the integrity of multiple files at each time slot with high checking probability. Furthermore, to tackle the fairness problem derived from the sampling strategy, we propose a fair approach by designing an arbitration algorithm with the verifiable random function. Security analysis shows the security of our approach under the random oracle model. Evaluation and experiments demonstrate that our approach is more efficient in the big data scenario compared with the state-of-the-arts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据