4.6 Article

Efficiency boost of CZTS solar cells based on double-absorber architecture: Device modeling and analysis

期刊

SOLAR ENERGY
卷 225, 期 -, 页码 44-52

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.solener.2021.07.01

关键词

SCAPS; CZTS; Double-absorber; Thin-film solar cells

向作者/读者索取更多资源

This study introduces a new approach using silicon as a second absorber to enhance the performance of CZTS thin-film solar cell devices, resulting in improved photovoltaic parameters through optimization. The correlation between the two absorbers suggests that maximum efficiency can be achieved with specific absorber thicknesses and doping levels. Additionally, the proposed model shows stable performance even at high operating temperatures.
In this study, we present a new alternative approach that utilizes Si as a second absorber along with the primary CZTS absorber to improve all photovoltaics performance parameters for CZTS based thin-film solar cell devices. The proposed ZnO:Al/CdS/CZTS/Si/Mo with a double-absorber hybrid structure has been extensively investigated and analyzed by employing the SCAPS-1D simulation package. Initial direct integration of a thin Si layer with thickness as low as 200 nm between the Mo back-contact and the primary CZTS active layer has resulted in a significant efficiency boost of 16.32%. Further optimization of several material parameters such as thickness, bandgap energy, and doping concentration for both absorbers have resulted in additional enhancement of many photovoltaic performance parameters such as the FF, J(sc,) V-oc,V- and PCE. The correlation study between the two absorbers suggests that maximum efficiency of 19.40%, FF of 88.54%, V-oc of 0.84 V and J(SC) of 27.55 mA/cm(2) can be attained at absorbers thicknesses of about 2 mu m and high doping level up to 10(18) cm(-3) . This can be attributed to the generation of more charge carriers with the increase of absorbers thicknesses. Additionally, the proposed model shows a stable performance with the rise of the operating temperature up to 350 K. Adding Si layer to the cell structure has resulted in pronounced quantum efficiency (QE) improvement due to the increase of solar spectrum absorption at longer wavelengths. A significant improvement in I-V characteristics was also detected with the decrease of the double-absorber structure's series resistance compared to the conventional single-absorber CZTS structure. The outcomes of this study represent a promising solution toward the fabrication of high-performance and cost-effective thin CZTS solar cell devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据