4.6 Article

Gene transfection efficiency into dendritic cells is influenced by the size of cationic liposomes/DNA complexes

期刊

EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES
卷 102, 期 -, 页码 230-236

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ejps.2017.03.023

关键词

Cationic liposomes; Endocytosis; Vaccine

向作者/读者索取更多资源

Cationic liposomes have attracted recent attention as DNA vaccine carriers that can target dendritic cells (DCs). In general, cationic liposome/DNA complexes (lipoplexes) are taken up by various cells via clathrin-mediated endocytosis, caveolae-mediated endocytosis, macropinocytosis, or phagocytosis, with the mode of endocytosis determining further intracellular trafficking pathways. Moreover, the physicochemical properties of cationic lipoplexes, including lipid composition, shape, size, and charge, influence transfection efficiency, affecting uptake and subsequent intracellular pathways. To develop cationic liposomes as potential DNA vaccine carriers, the objective of this study was to study the effect of lipoplex size on DNA transfection efficiency in DCs. We explored the size-dependent endocytosis pathway and the intracellular trafficking of cationic lipoplexes using bone marrow derived dendritic cells (BMDCs). Our results indicated that small-sized lipoplexes (approximately 270 nm diameter) were taken up by BMDC5 via caveolae-mediated endocytosis, which led to a non-degradative pathway, whereas larger-sized lipoplexes (approximately 500 nm diameter) were taken up by BMDC5 via clathrin-mediated endocytosis and micropinocytosis, which led to a lysosomal degradation pathway. These findings suggest that, by regulating the size of lipoplexes, it may be possible to develop cationic liposomes as DNA vaccine therapies for targeting DCs. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据