4.6 Article

Intestinal absorption mechanisms of 2′-deoxy-2′-β-fluoro-4′-azidocytidine, a cytidine analog for AIDS treatment, and its interaction with P-glycoprotein, multidrug resistance-associated protein 2 and breast cancer resistance protein

期刊

EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES
卷 105, 期 -, 页码 150-158

出版社

ELSEVIER
DOI: 10.1016/j.ejps.2017.05.009

关键词

2'-deoxy-2'-beta-fluoro-4'-azidocytidine; Caco-2 cells; Everted rat intestine; Intestinal absorption; ATP-binding cassette drug transporters

资金

  1. National Natural Science Foundation of China [81330075]
  2. major projects of National Science and Technology Creation of New Drugs [2012ZX09102101-003]

向作者/读者索取更多资源

2'-Deoxy-2'-beta-fluoro-4'-azidocytidine (FNC), a cytidine analog, has attracted great interest because of its potent activity against wild-type and multidrug-resistant HIV. The purpose of current study was to investigate the absorption mechanisms of FNC in the small intestine, as well as the interactions between FNC and P-glycoprotein (P-gp), multidrug resistance-associated protein 2 (MRP2) and breast cancer resistance protein (BCRP). The experiments were performed using Caco-2 cells and the rat small intestine. The uptake experiment indicated that FNC concentration, extracellular pH and the incubated temperature could influence the uptake of FNC in Caco-2 cells. NaN3, verapamil, probenecid, MK571 and GF120918 could significantly increase the FNC uptake in Caco-2 cells. The transport experiment showed that both the absorption and secretion of FNC were concentration dependent. The secretion of FNC was approximately 2-fold greater than the absorption. In the presence of verapamil, probenecid, MK571 or GF120918, the efflux ratio decreased by > 50%. In everted rat intestine, the absorption of FNC also depended on its concentration and was not significantly different in the different segments of the small intestine. Real-time RT-PCR results indicated that the gene expressions of P-gp, MRP2 and BCRP were up-regulated after exposure to FNC. The reduction in accumulation of rhodamine 123 after treatment with FNC revealed its ability to up-regulate P-gp activity. In conclusion, FNC was completely absorbed by passive diffusion and active transport mechanisms. P-gp, MRP2 and BCRP could influence the absorption of FNC in the small intestine. FNC could modulate the gene expressions of P-gp, MRP2 and BCRP, and increase the activity of P-gp.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据