4.6 Article

The lysosomal protein ABCD4 can transport vitamin B12 across liposomal membranes in vitro

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 296, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jbc.2021.100654

关键词

-

资金

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan [20K15990]
  2. Grants-in-Aid for Scientific Research [20K15990] Funding Source: KAKEN

向作者/读者索取更多资源

This study demonstrates that ABCD4 is capable of transporting cobalamin from the inside to the outside of liposomes, while LMBD1 does not have this ability. These findings provide insight into the important role of ABCD4 in cobalamin deficiency.
Vitamin B-12 (cobalamin) is an essential micronutrient for human health, and mutation and dysregulation of cobalamin metabolism are associated with serious diseases, such as methylmalonic aciduria and homocystinuria. Mutations in ABCD4 or LMBRD1, which encode the ABC transporter ABCD4 and lysosomal membrane protein LMBD1, respectively, lead to errors in cobalamin metabolism, with the phenotype of a failure to release cobalamin from lysosomes. However, the mechanism of transport of cobalamin across the lysosomal membrane remains unknown. We previously demonstrated that LMBD1 is required for the translocation of ABCD4 from the endoplasmic reticulum to lysosomes. This suggests that ABCD4 performs an important function in lysosomal membrane cobalamin transport. In this study, we expressed human ABCD4 and LMBD1 in methylotrophic yeast and purified them. We prepared ABCD4 and/or LMBD1 containing liposomes loaded with cobalamin and then quantified the release of cobalamin from the liposomes by reverse-phase HPLC. We observed that ABCD4 was able to transport cobalamin from the inside to the outside of liposomes dependent on its ATPase activity and that LMBD1 exhibited no cobalamin transport activity. These results suggest that ABCD4 may be capable of transporting cobalamin from the lysosomal lumen to the cytosol. Furthermore, we examined a series of ABCD4 missense mutations to understand how these alterations impair cobalamin transport. Our findings give insight into the molecular mechanism of cobalamin transport by which ABCD4 involves and its importance in cobalamin deficiency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据