4.6 Article

An inducible glycogen synthase-1 knockout halts but does not reverse Lafora disease progression in mice

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 296, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1074/jbc.RA120.015773

关键词

-

资金

  1. Chelsea's Hope Lafora Disease Research Fund
  2. Associazione Italiana Lafora (AILA), France-Lafora
  3. Milana and Tatjana Gajic Lafora Disease Foundation
  4. Ontario Brain Institute
  5. National Institute of Neurological Disorders and Stroke of the National Institutes of Health (NIH) [P01 NS097197]

向作者/读者索取更多资源

The study demonstrates that knocking out Gys1 gene in LD mice can partially halt the progression of the disease but cannot fully reverse neurodegeneration and fatal epilepsy. While Gys1 knockout inhibits glycogen and Lafora body accumulation in skeletal muscle, it has some effect in preventing disease development in the brain. Additional research is needed to explore further mechanisms as glycogen and LBs still accumulate in certain tissues.
Malstructured glycogen accumulates over time in Lafora disease (LD) and precipitates into Lafora bodies (LBs), leading to neurodegeneration and intractable fatal epilepsy. Constitutive reduction of glycogen synthase-1 (GYS1) activity prevents murine LD, but the effect of GYS1 reduction later in disease course is unknown. Our goal was to knock out Gys1 in laforin (Epm2a)-deficient LD mice after disease onset to determine whether LD can be halted in midcourse, or even reversed. We generated Epm2a-deficient LD mice with tamoxifen-inducible Cre-mediated Gys1 knockout. Tamoxifen was administered at 4 months and disease progression assessed at 12 months. We verified successful knockout at mRNA and protein levels using droplet digital PCR and Western blots. Glycogen determination and periodic acid-Schiff-diastase staining were used to analyze glycogen and LB accumulation. Immunohistochemistry using astrocytic (glial fibrillary acidic protein) and microglial (ionized calcium-binding adapter molecule 1) markers was performed to investigate neuroinflammation. In the disease-relevant organ, the brain, Gys1 mRNA levels were reduced by 85% and GYS1 protein depleted. Glycogen accumulation was halted at the 4-month level, while LB formation and neuroinflammation were significantly, though incompletely, prevented. Skeletal muscle analysis confirmed that Gys1 knockout inhibits glycogen and LB accumulation. However, tamoxifen-independent Cre recombination precluded determination of disease halting or reversal in this tissue. Our study shows that Gys1 knockdown is a powerful means to prevent LD progression, but this approach did not reduce brain glycogen or LBs to levels below those at the time of intervention. These data suggest that endogenous mechanisms to clear brain LBs are absent or, possibly, compromised in laforin deficient murine LD.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据