4.6 Article

Imaging by intensity interferometry of x-ray fluorescence at a compact x-ray free-electron laser

期刊

PHYSICAL REVIEW A
卷 104, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.104.023514

关键词

-

资金

  1. National Science Foundation STC Award [1231306]
  2. National Science Foundation Division of Biological Infrastructure CAREER Award [1943448]
  3. Div Of Biological Infrastructure
  4. Direct For Biological Sciences [1943448] Funding Source: National Science Foundation

向作者/读者索取更多资源

A semiclassical theory of incoherent diffractive imaging based on the Hanbury Brown and Twiss effect is proposed for imaging inner-shell x-ray fluorescence from heavy atoms excited by femtosecond pulses of an x-ray laser. The study demonstrates that compact XFELs with reduced flux but sub-femtosecond pulses are ideally suited for atomic-resolution three-dimensional mapping of heavy atoms in materials science, chemistry, and biology.
A semiclassical theory of incoherent diffractive imaging is given, based on the Hanbury Brown and Twiss effect when used to image inner-shell x-ray fluorescence from heavy atoms excited by the femtosecond pulses of an x-ray laser. Interference between emission from different atoms is expected when the pulse duration is shorter than the fluorescent lifetime. Simulations for atoms at the vertices of an icosahedral virus capsid are given, and reconstructions are presented based on phasing of the pair correlation function between photons emitted independently from many different atoms at two different detector pixels. The dependence of the pair-correlation function on the fluorescence lifetime relative to the pulse duration of the x-ray free-electron laser (XFEL) is computed, and a simple expression is obtained for the contrast of incoherent diffractive imaging speckles as a function of the XFEL's flux and lifetime. This indicates that compact XFELs, with reduced flux but sub-femtosecond pulses, should be ideally suited to atomic-resolution three-dimensional mapping of heavy atoms in materials science, chemistry, and biology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据