4.7 Article

SARS-CoV-2 crosses the blood-brain barrier accompanied with basement membrane disruption without tight junctions alteration

期刊

出版社

SPRINGERNATURE
DOI: 10.1038/s41392-021-00719-9

关键词

-

资金

  1. National Research and Development Project of China [2020YFC0841100]
  2. National Natural Science Foundation of China [82061138007]
  3. Fundamental Research Funds for CAMS of China [2020HY320001]
  4. National Key Research and Development Project of China [2020YFA0707803]
  5. CAMS initiative for Innovative Medicine of China [2016-I2M-2-006]

向作者/读者索取更多资源

The study found evidence supporting that SARS-CoV-2 can cross the blood-brain barrier in transcellular pathways based on experiments in mice and hamsters. The transmission pathway involves disrupted basement membrane without obvious alteration of tight junctions.
SARS-CoV-2 has been reported to show a capacity for invading the brains of humans and model animals. However, it remains unclear whether and how SARS-CoV-2 crosses the blood-brain barrier (BBB). Herein, SARS-CoV-2 RNA was occasionally detected in the vascular wall and perivascular space, as well as in brain microvascular endothelial cells (BMECs) in the infected K18-hACE2 transgenic mice. Moreover, the permeability of the infected vessel was increased. Furthermore, disintegrity of BBB was discovered in the infected hamsters by administration of Evans blue. Interestingly, the expression of claudin5, ZO-1, occludin and the ultrastructure of tight junctions (TJs) showed unchanged, whereas, the basement membrane was disrupted in the infected animals. Using an in vitro BBB model that comprises primary BMECs with astrocytes, SARS-CoV-2 was found to infect and cross through the BMECs. Consistent with in vivo experiments, the expression of MMP9 was increased and collagen IV was decreased while the markers for TJs were not altered in the SARS-CoV-2-infected BMECs. Besides, inflammatory responses including vasculitis, glial activation, and upregulated inflammatory factors occurred after SARS-CoV-2 infection. Overall, our results provide evidence supporting that SARS-CoV-2 can cross the BBB in a transcellular pathway accompanied with basement membrane disrupted without obvious alteration of TJs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据