4.6 Article

Modeling refractory high-entropy alloys with efficient machine-learned interatomic potentials: Defects and segregation

期刊

PHYSICAL REVIEW B
卷 104, 期 10, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.104.104101

关键词

-

资金

  1. Euratom research and training programme 2014-2018 [633053]
  2. Euratom research and training programme 2019-2020 [633053]
  3. Finnish Grid and Cloud Infrastructure [urn:nbn:fi:research-infras-2016072533]

向作者/读者索取更多资源

The study reveals that in the MoNbTaVW alloy, different atomic elements exhibit different segregation behaviors, and during annealing, interstitial atoms in MoNbTaVW tend to recombine defects rather than cluster, in contrast to W.
We develop a fast and accurate machine-learned interatomic potential for the Mo-Nb-Ta-V-W quinary system and use it to study segregation and defects in the body-centered-cubic refractory high-entropy alloy MoNbTaVW. In the bulk alloy, we observe clear ordering of mainly Mo-Ta and V-Wbinaries at low temperatures. In damaged crystals, our simulations reveal clear segregation of vanadium, the smallest atom in the alloy, to compressed interstitial-rich regions such as radiation-induced dislocation loops. Vanadium also dominates the population of single self-interstitial atoms. In contrast, due to its larger size and low surface energy, niobium segregates to spacious regions such as the inner surfaces of voids. When annealing samples with supersaturated concentrations of defects, we find that in complete contrast to W, interstitial atoms in MoNbTaVW cluster to create only small (similar to 1 nm) experimentally invisible dislocation loops enriched by vanadium. By comparison to W, we explain this by the reduced but three-dimensional migration of interstitials, the immobility of dislocation loops, and the increased mobility of vacancies in the high-entropy alloy, which together promote defect recombination over clustering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据