4.7 Article

On the Convergence Behavior of Partitioned-Block Frequency-Domain Adaptive Filters

期刊

IEEE TRANSACTIONS ON SIGNAL PROCESSING
卷 69, 期 -, 页码 4906-4920

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSP.2021.3102175

关键词

Signal processing algorithms; Steady-state; Convergence; Time-domain analysis; Partitioning algorithms; Transient analysis; Approximation algorithms; Adaptive filtering; frequency domain; PBFDAF; transient behavior; steady-state solution

资金

  1. Youth Innovation PromotionAssociation ofChinese Academy of Sciences [2018027]
  2. National Natural Science Foundation of China [62171438]

向作者/读者索取更多资源

This paper presents a comprehensive statistical analysis for a family of the overlap-save PBFDAF algorithms with 50% overlap, including the transient and steady-state performance. Theoretical models for the mean and mean-square behavior of the PBFDAF algorithms are established without restricting the distribution of the inputs to being Gaussian. The study reveals that both the constrained and unconstrained PBFDAFs converge to the Wiener solution, but the mean weight vector of the unconstrained PBFDAF algorithms cannot converge to the true solution for any inputs.
Partitioned-block frequency-domain adaptive filter (PBFDAF) algorithms have become very popular, in particular, for acoustic signal processing. However, the stochastic behavior of PBFDAFs has not been extensively examined. This paper presents a comprehensive statistical analysis for a family of the overlap-save PBFDAF algorithms with 50% overlap, including the transient and steady-state performance. The frequency-domain equations of the PBFDAFs are transformed into the time-domain counterparts, which allows us to carry out the analysis completely in the time domain. By means of the independence assumption and vectorization operation, theoretical models for the mean and mean-square behavior of the PBFDAF algorithms are established without restricting the distribution of the inputs to being Gaussian. Specifically, the mean weight behavior and corresponding steady-state solution are provided. Closed-form expressions for the mean-square deviation (MSD) and mean-square error (MSE) are derived. The upper bound on the step size for the mean and mean-square stability of the PBFDAFs is specified. The theoretical model presents new insights into the convergence properties of the PBFDAFs with a sufficient number of coefficients. It was revealed that both the constrained and unconstrained PBFDAFs converge to the Wiener solution. However, the mean weight vector of the unconstrained PBFDAF algorithms cannot converge to the true solution for any inputs, while that of the constrained version can. The presented theory explains why the steady-state MSD of the unconstrained PBFDAF algorithm is larger than that of the constrained version but their minimum MSE is the same. Monte Carlo simulations provide very good support for our theory.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据