4.7 Article

Region-Specific Cell Membrane N-Glycome of Functional Mouse Brain Areas Revealed by nanoLC-MS Analysis

期刊

MOLECULAR & CELLULAR PROTEOMICS
卷 20, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.mcpro.2021.100130

关键词

-

资金

  1. National Institutes of Health (NIH)
  2. National Institute of Diabetes and Digestive and Kidney Diseases [R21DK118379]
  3. National Center for Complementary and Integrative Health [R01AT009365, R01AT007079]
  4. National Institute of General Medical Sciences [R01GM049077]

向作者/读者索取更多资源

This study utilized a novel technology to analyze the N-glycome of different brain regions, revealing distinct expression profiles of glycans in functional brain areas, laying the foundation for studying the specific roles of N-glycans in brain health and disease. By studying the cell membrane N-glycome, it demonstrated the spatial distribution of glycan variations in different brain regions, providing insights into the complex glyco-architecture of the brain.
N-glycosylation is a ubiquitous posttranslational modification that affects protein structure and function, including those of the central nervous system. N-glycans attached to cell membrane proteins play crucial roles in all aspects of biology, including embryogenesis, development, cell-cell recognition and adhesion, and cell signaling and communication. Although brain function and behavior are known to be regulated by the N-glycosylation state of numerous cell surface glycoproteins, our current understanding of brain glycosylation is limited, and glycan variations associated with functional brain regions remain largely unknown. In this work, we used a well-established cell surface glycomic nanoLC-Chip-Q-TOF platform developed in our laboratory to characterize the N-glycome of membrane fractions enriched in cell surface glycoproteins obtained from specific functional brain areas. We report the cell membrane N-glycome of two major developmental divisions of mice brain with specific and distinctive functions, namely the forebrain and hindbrain. Region-specific glycan maps were obtained with similar to 120 N-glycan compositions in each region, revealing significant differences in brain-type glycans involving high mannose, bisecting, and core and antenna fucosylated species. Additionally, the cell membrane N-glycome of three functional regions of the forebrain and hindbrain, the cerebral cortex, hippocampus, and cerebellum, was characterized. In total, 125 N-glycan compositions were identified, and their region-specific expression profiles were characterized. Over 70 N-glycans contributed to the differentiation of the cerebral cortex, hippocampus, and cerebellum N-glycome, including bisecting and branched glycans with varying degrees of core and antenna fucosylation and sialylation. This study presents a comprehensive spatial distribution of the cell-membrane enriched N-glycomes associated with five discrete anatomical and functional brain areas, providing evidence for the presence of a previously unknown brain glyco-architecture. The region-specific molecular glyco fingerprints identified here will enable a better understanding of the critical biological roles that N-glycans play in the specialized functional brain areas in health and disease.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据