4.7 Article

Phenyl-pyta-tricarbonylrhenium(I) complexes: combining a simplified structure and steric hindrance to modulate the photoluminescence properties

期刊

DALTON TRANSACTIONS
卷 50, 期 39, 页码 13686-13698

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1dt02161c

关键词

-

向作者/读者索取更多资源

This study synthesized three new strongly luminescent tricarbonylrhenium(I) complexes with promising optical properties. Comparison of these complexes revealed that increasing the size of the substituent significantly enhanced the photoluminescence quantum yield, while the complexes also showed waveguiding properties not previously seen in rhenium complexes.
Strongly luminescent tricarbonylrhenium(I) complexes are promising candidates in the field of optical materials. In this study, three new complexes bearing a 3-(2-pyridyl)-1,2,4-triazole (pyta) bidentate ligand with an appended phenyl group were obtained in very good yields owing to an optimized synthetic procedure. The first member of this series, i.e. complex 1, was compared with the previously studied complex RePBO to understand the influence of the fluorescent benzoxazole unit grafted on the phenyl ring. Then, to gauge the effect of steric hindrance on the luminescence properties, the phenyl group of complex 1 was substituted in the para position by a bulky tert-butyl group or an adamantyl moiety, affording complexes 2 and 3, respectively. The results of theoretical calculations indicated that these complexes were quite similar from an electronic point of view, as evidenced by the electrochemical study. In dichloromethane solution, under excitation in the UV range, all the complexes emitted weak phosphorescence in the red region. In the solid state, they could be excited in the blue region of the visible spectrum and they emitted strong yellow light. The photoluminescence quantum yield was markedly increased with raising the size of the substituent, passing from 0.42 for 1 to 0.59 for 3. The latter complex also exhibited clear waveguiding properties, unprecedented for rhenium complexes. From this point of view, these easy-synthesized and spectroscopically attractive complexes constitute a new generation of emitters for use in imaging applications and functional materials. However, the comparison with RePBO showed that the presence of the benzoxazole group leads to unsurpassed mechanoresponsive luminescence (MRL) properties, due to the involvement of a unique photophysical mechanism that takes place only in this type of complex.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据