4.8 Article

Biphasic electrochemical peptide synthesis

期刊

CHEMICAL SCIENCE
卷 12, 期 39, 页码 12911-12917

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1sc03023j

关键词

-

资金

  1. JSPS KAKENHI [17K19222, 19H00930, 19K22272, 16H06193, 17K19221, 21J11675]
  2. JST CREST [JPMJCR19R2]
  3. Grants-in-Aid for Scientific Research [21J11675, 19H00930, 19K22272] Funding Source: KAKEN

向作者/读者索取更多资源

An electrochemical peptide synthesis method has been developed to activate carboxylic acids in a biphasic system, with the stoichiometric byproduct Ph3P]O being recycled back into triphenylphosphine. This innovative approach not only reduces waste derived from coupling reagents, but also successfully synthesized a commercial peptide active pharmaceutical ingredient (API) leuprorelin without traditional coupling reagents.
The large amount of waste derived from coupling reagents is a serious drawback of peptide synthesis from a green chemistry viewpoint. To overcome this issue, we report an electrochemical peptide synthesis in a biphasic system. Anodic oxidation of triphenylphosphine (Ph3P) generates a phosphine radical cation, which serves as the coupling reagent to activate carboxylic acids, and produces triphenylphosphine oxide (Ph3P]O) as a stoichiometric byproduct. In combination with a soluble tag-assisted liquid-phase peptide synthesis, the selective recovery of desired peptides and Ph3P]O was achieved. Given that methods to reduce Ph3P]O to Ph3P have been reported, Ph3P]O could be a recyclable byproduct unlike byproducts from typical coupling reagents. Moreover, a commercial peptide active pharmaceutical ingredient (API), leuprorelin, was successfully synthesized without the use of traditional coupling reagents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据