4.7 Article

Reference region selection and the association between the rate of amyloid accumulation over time and the baseline amyloid burden

出版社

SPRINGER
DOI: 10.1007/s00259-017-3666-8

关键词

Alzheimer's disease; Amyloid-PET; SUVR; Reference region; Quantification

资金

  1. Alzheimer's Disease Neuroimaging Initiative (ADNI
  2. National Institutes of Health) [U01 AG024904]
  3. DOD ADNI (Department of Defense) [W81XWH-12-2-0012]
  4. National Institute on Aging
  5. National Institute of Biomedical Imaging and Bioengineering
  6. AbbVie
  7. Alzheimer's Association
  8. Alzheimer's Drug Discovery Foundation
  9. Araclon Biotech
  10. BioClinica, Inc.
  11. Biogen
  12. Bristol-Myers Squibb Company
  13. CereSpir, Inc.
  14. Cogstate
  15. Eisai Inc.
  16. Elan Pharmaceuticals, Inc.
  17. Eli Lilly and Company
  18. EuroImmun
  19. F. Hoffmann-La Roche Ltd
  20. Genentech, Inc.
  21. Fujirebio
  22. GE Healthcare
  23. IXICO Ltd.
  24. Janssen Alzheimer Immunotherapy Research & Development, LLC.
  25. Johnson & Johnson Pharmaceutical Research & Development LLC.
  26. Lumosity
  27. Lundbeck
  28. Merck Co., Inc.
  29. Meso Scale Diagnostics, LLC.
  30. NeuroRx Research
  31. Neurotrack Technologies
  32. Novartis Pharmaceuticals Corporation
  33. Pfizer Inc.
  34. Piramal Imaging
  35. Servier
  36. Takeda Pharmaceutical Company
  37. Transition Therapeutics
  38. Canadian Institutes of Health Research

向作者/读者索取更多资源

Relative quantitative analysis of amyloid plaque burden in Alzheimer's disease (AD) patients can be reported as standardized uptake value ratio (SUVR) from positron emission tomography (PET). Here, the SUVR is the ratio of the mean amyloid radioligand retention in a composite (COMP) neocortical volume of interest (VOI) to that in a reference VOI, such as the cerebellum, brainstem (BST)/pons, or white matter (WM). Some longitudinal PET investigations show that the rate of amyloid accumulation to follow-up has an inverted U relationship with baseline amyloid SUVR relative to cerebellar or brainstem/pons reference VOIs. The corresponding association with SUVR relative to WM is unknown. To test the possible benefits of WM normalization, we analyzed [F-18]-AV45 PET data from 404 subjects in the AD Neuroimaging Initiative (ADNI) database at baseline and 2-year follow-up (144 cognitively normal controls, 225 patients with mild cognitive impairment, and 35 AD patients). Reference regions included subcortical WM as well as conventional cerebellar gray matter (CBL), and BST. We tested associations between each subject's inter-session change (a dagger) of SUVR and their baseline SUVR by applying linear, logarithmic, and quadratic regression analyses. Unscaled standardized uptake values (SUVs) were correlated between VOIs at baseline and follow-up, and within VOIs in the longitudinal run. The association between a dagger SUVR and baseline SUVR relative to WM reference was best described by an inverted U-shaped function. Correlation analyses demonstrated a high regional and temporal correlation between COMP and WM VOI SUVs. For WM normalization, we confirm that the rate of amyloid accumulation over time follows an inverted U-shaped function of baseline amyloid burden. Reference region selection, however, has substantial effects on SUVR results. This reflects the extent of covariance between SUVs in the COMP VOI and those in the various reference VOIs. We speculate that PET labeling of amyloid deposition within target regions is partially confounded by effects of longitudinal changes of cerebral blood flow (CBF) on tracer delivery. Indeed, CBF may be the leading factor influencing longitudinal SUV changes. We suggest that SUVR relative to WM may be more robust to changes in CBF, and thus fitter for sensitive detection of amyloid accumulation in intervention studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据