4.7 Article

Structures and biochemical evaluation of silver(I) 5,5-diethylbarbiturate complexes with bis(diphenylphosphino)alkanes as potential antimicrobial and anticancer agents

期刊

EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY
卷 139, 期 -, 页码 901-916

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.ejmech.2017.08.062

关键词

Silver(I); 5,5-Diethylbarbiturate; Bis(diphenylphosphino)alkane; Antimicrobial; Anticancer; Apoptosis mechanism

资金

  1. research project OUAP [F-2016/9]
  2. Uludag University

向作者/读者索取更多资源

New silver(I) 5,5-diethylbarbiturate (barb) complexes with a series of bis(diphenylphosphino)alkanes such as 1,1-bis(diphenylphosphino)methane (dppm), 1,2-bis(diphenylphosphino)ethane (dppe), 1,3-bis-(diphenylphosphino)propane (dppp) and 1,4-bis(diphenylphosphino)butane (dppb) were synthesized and characterized. [Ag-2(barb)(2)(mu-dppm)(2) (1), [Ag-2(barb)(2)(mu-dppe)(DMSO)(2)] (2) and [Ag-2(barb)(2)( dppp)2](3) were binuclear, while [Ag(barb)(mu-dppb)] (4) was a coordination polymer. 1-4 effectively bind to the G/C rich region of the major groove of DNA and interact with BSA via hydrophobic interactions in accordance with molecular docking studies. All complexes displayed significant DNA cleavage in the presence of H2O2. 1-4 exhibited more specificity against Gram-positive bacteria than Gram-negative bacteria, but 2 targets both bacterial strains, being comparable to AgNO3 and silver sulfadiazine. Complex 1 has a strong growth inhibitory effect on A549 cells, while 2 and 3 exhibit considerable cytotoxicity against MCF-7 cells. The complexes showed high accumulation in the cytosol fraction of the cells. Mechanistic studies showed that 1 and 2 display effective cell growth inhibition by triggering S and G2/M phase arrest, induce apoptosis via mitochondrial pathways and also damage to DNA due to the overproduction of ROS. (C) 2017 Elsevier Masson SAS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据