4.5 Article Proceedings Paper

Shear work contribution to convective heat transfer of dilute gases in slip flow regime

期刊

EUROPEAN JOURNAL OF MECHANICS B-FLUIDS
卷 64, 期 -, 页码 60-68

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.euromechflu.2016.12.004

关键词

Sliding friction; Internal forced convection; Dilute gas; Viscous dissipation; Microfluidics

向作者/读者索取更多资源

In the literature some researchers highlighted that for a dilute gas in slip flow regime and in presence of a non negligible viscous heating, the analysis of the gas micro-convection has to be tackled by modifying the thermal boundary conditions to account for the shear work due to the slip at the wall. Although in the recent past a specific modified boundary condition has been proposed, theoretically justified and applied to investigate the effect of the shear work on the convective heat transfer in presence of dilute gases, in this paper is demonstrated that there is not a need of a modified boundary condition in order to take into account the effect of the shear work in the analysis of forced convection. In the present work by means of a comprehensive theoretical analysis is demonstrated that the modified boundary condition is useless for the analysis of the effect of shear work on the evaluation of the convective heat transfer coefficients in presence of a dilute gas with non-negligible viscous dissipation. Moreover, to evaluate the inaccuracy of the results obtained by using the modified boundary conditions the difference, in terms of Nusselt number, between the exact and the approximate solution has been numerically estimated for elliptical microchannels. The numerical outcomes point out that the adoption of the modified boundary condition leads to an underestimation or an overestimation of the Nusselt numbers depending on the values of Brinkman number and on the channel cross section geometry. (C) 2016 Elsevier Masson SAS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据