4.7 Article

A new rock slicing method based on linear programming

期刊

COMPUTERS AND GEOTECHNICS
卷 65, 期 -, 页码 12-29

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compgeo.2014.11.007

关键词

Rock slicing; Block generation; Distinct element method; Sequential subdivision; Rock mechanics; Linear programming

向作者/读者索取更多资源

One of the important pre-processing stages in the analysis of jointed rock masses is the identification of rock blocks from discontinuities in the field. In 3D, the identification of polyhedral blocks usually involve tedious housekeeping algorithms, because one needs to establish their vertices, edges and faces, together with a hierarchical data structure: edges by pairs of vertices, faces by bounding edges, polyhedron by bounding faces. In this paper, we present a novel rock slicing method, based on the subdivision approach and linear programming optimisation, which requires only a single level of data structure rather than the current 2 or 3 levels presented in the literature. This method exploits the novel mathematical framework for contact detection introduced in Boon et al. (2012). In the proposed method, it is not necessary to calculate the intersections between a discontinuity and the block faces, because information on the block vertices and edges is not needed. The use of a simpler data structure presents obvious advantages in terms of code development, robustness and ease of maintenance. Non-persistent joints are also introduced in a novel way within the framework of linear programming. Advantages and disadvantages of the proposed modelling of non-persistent joints are discussed in this paper. Concave blocks are generated using established methods in the sequential subdivision approach, i.e. through fictitious joints. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据