4.7 Article

Conundrum of weak-noise limit for diffusion in a tilted periodic potential

期刊

PHYSICAL REVIEW E
卷 104, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.104.034104

关键词

-

资金

  1. NCN [2017/26/D/ST2/00543]

向作者/读者索取更多资源

This study revisited the paradigmatic model of inertial Brownian particles diffusing in a tilted periodic potential using state-of-the-art computer simulations. The results indicate that in the parameter regime where the particle velocity is bistable, an everlasting ballistic diffusion emerges when the thermal noise intensity tends to zero, resulting in the diffusion coefficient not reaching its stationary constant value.
The weak-noise limit of dissipative dynamical systems is often the most fascinating one. In such a case fluctuations can interact with a rich complexity, frequently hidden in deterministic systems, to give rise to phenomena that are absent for both noiseless and strong fluctuations regimes. Unfortunately, this limit is also notoriously hard to approach analytically or numerically. We reinvestigate in this context the paradigmatic model of nonequilibrium statistical physics consisting of inertial Brownian particles diffusing in a tilted periodic potential by exploiting state-of-the-art computer simulations of an extremely long timescale. In contrast to previous results on this longstanding problem, we draw an inference that in the parameter regime for which the particle velocity is bistable the lifetime of ballistic diffusion diverges to infinity when the thermal noise intensity tends to zero, i.e., an everlasting ballistic diffusion emerges. As a consequence, the diffusion coefficient does not reach its stationary constant value.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据